1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
use zeroize::Zeroize;
use sha2::Sha256;
use group::ff::PrimeField;
use elliptic_curve::{
generic_array::GenericArray,
bigint::{NonZero, CheckedAdd, Encoding, U384},
hash2curve::{Expander, ExpandMsg, ExpandMsgXmd},
};
use crate::Ciphersuite;
macro_rules! kp_curve {
(
$feature: literal,
$lib: ident,
$Ciphersuite: ident,
$ID: literal
) => {
impl Ciphersuite for $Ciphersuite {
type F = $lib::Scalar;
type G = $lib::ProjectivePoint;
type H = Sha256;
const ID: &'static [u8] = $ID;
fn generator() -> Self::G {
$lib::ProjectivePoint::GENERATOR
}
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F {
// While one of these two libraries does support directly hashing to the Scalar field, the
// other doesn't. While that's probably an oversight, this is a universally working method
// This method is from
// https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html
// Specifically, Section 5
// While that draft, overall, is intended for hashing to curves, that necessitates
// detailing how to hash to a finite field. The draft comments that its mechanism for
// doing so, which it uses to derive field elements, is also applicable to the scalar field
// The hash_to_field function is intended to provide unbiased values
// In order to do so, a wide reduction from an extra k bits is applied, minimizing bias to
// 2^-k
// k is intended to be the bits of security of the suite, which is 128 for secp256k1 and
// P-256
const K: usize = 128;
// L is the amount of bytes of material which should be used in the wide reduction
// The 256 is for the bit-length of the primes, rounded up to the nearest byte threshold
// This is a simplification of the formula from the end of section 5
const L: usize = (256 + K) / 8; // 48
// In order to perform this reduction, we need to use 48-byte numbers
// First, convert the modulus to a 48-byte number
// This is done by getting -1 as bytes, parsing it into a U384, and then adding back one
let mut modulus = [0; L];
// The byte repr of scalars will be 32 big-endian bytes
// Set the lower 32 bytes of our 48-byte array accordingly
modulus[16 ..].copy_from_slice(&(Self::F::ZERO - Self::F::ONE).to_bytes());
// Use a checked_add + unwrap since this addition cannot fail (being a 32-byte value with
// 48-bytes of space)
// While a non-panicking saturating_add/wrapping_add could be used, they'd likely be less
// performant
let modulus = U384::from_be_slice(&modulus).checked_add(&U384::ONE).unwrap();
// The defined P-256 and secp256k1 ciphersuites both use expand_message_xmd
let mut wide = U384::from_be_bytes({
let mut bytes = [0; 48];
ExpandMsgXmd::<Sha256>::expand_message(&[msg], &[dst], 48)
.unwrap()
.fill_bytes(&mut bytes);
bytes
})
.rem(&NonZero::new(modulus).unwrap())
.to_be_bytes();
// Now that this has been reduced back to a 32-byte value, grab the lower 32-bytes
let mut array = *GenericArray::from_slice(&wide[16 ..]);
let res = $lib::Scalar::from_repr(array).unwrap();
// Zeroize the temp values we can due to the possibility hash_to_F is being used for nonces
wide.zeroize();
array.zeroize();
res
}
}
};
}
#[cfg(test)]
fn test_oversize_dst<C: Ciphersuite>() {
use sha2::Digest;
// The draft specifies DSTs >255 bytes should be hashed into a 32-byte DST
let oversize_dst = [0x00; 256];
let actual_dst = Sha256::digest([b"H2C-OVERSIZE-DST-".as_ref(), &oversize_dst].concat());
// Test the hash_to_F function handles this
// If it didn't, these would return different values
assert_eq!(C::hash_to_F(&oversize_dst, &[]), C::hash_to_F(&actual_dst, &[]));
}
/// Ciphersuite for Secp256k1.
///
/// hash_to_F is implemented via the IETF draft for hash to curve's hash_to_field (v16).
#[cfg(feature = "secp256k1")]
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct Secp256k1;
#[cfg(feature = "secp256k1")]
kp_curve!("secp256k1", k256, Secp256k1, b"secp256k1");
#[cfg(feature = "secp256k1")]
#[test]
fn test_secp256k1() {
ff_group_tests::group::test_prime_group_bits::<_, k256::ProjectivePoint>(&mut rand_core::OsRng);
// Ideally, a test vector from hash_to_field (not FROST) would be here
// Unfortunately, the IETF draft only provides vectors for field elements, not scalars
// Vectors have been requested in
// https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/issues/343
assert_eq!(
Secp256k1::hash_to_F(
b"FROST-secp256k1-SHA256-v11nonce",
&hex::decode(
"\
80cbea5e405d169999d8c4b30b755fedb26ab07ec8198cda4873ed8ce5e16773\
08f89ffe80ac94dcb920c26f3f46140bfc7f95b493f8310f5fc1ea2b01f4254c"
)
.unwrap()
)
.to_repr()
.iter()
.copied()
.collect::<Vec<_>>(),
hex::decode("acc83278035223c1ba464e2d11bfacfc872b2b23e1041cf5f6130da21e4d8068").unwrap()
);
test_oversize_dst::<Secp256k1>();
}
/// Ciphersuite for P-256.
///
/// hash_to_F is implemented via the IETF draft for hash to curve's hash_to_field (v16).
#[cfg(feature = "p256")]
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct P256;
#[cfg(feature = "p256")]
kp_curve!("p256", p256, P256, b"P-256");
#[cfg(feature = "p256")]
#[test]
fn test_p256() {
ff_group_tests::group::test_prime_group_bits::<_, p256::ProjectivePoint>(&mut rand_core::OsRng);
assert_eq!(
P256::hash_to_F(
b"FROST-P256-SHA256-v11nonce",
&hex::decode(
"\
f4e8cf80aec3f888d997900ac7e3e349944b5a6b47649fc32186d2f1238103c6\
0c9c1a0fe806c184add50bbdcac913dda73e482daf95dcb9f35dbb0d8a9f7731"
)
.unwrap()
)
.to_repr()
.iter()
.copied()
.collect::<Vec<_>>(),
hex::decode("f871dfcf6bcd199342651adc361b92c941cb6a0d8c8c1a3b91d79e2c1bf3722d").unwrap()
);
test_oversize_dst::<P256>();
}