1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
use zeroize::Zeroize;

use sha2::Sha256;

use group::ff::PrimeField;

use elliptic_curve::{
  generic_array::GenericArray,
  bigint::{NonZero, CheckedAdd, Encoding, U384},
  hash2curve::{Expander, ExpandMsg, ExpandMsgXmd},
};

use crate::Ciphersuite;

macro_rules! kp_curve {
  (
    $feature: literal,
    $lib:     ident,

    $Ciphersuite: ident,
    $ID:          literal
  ) => {
    impl Ciphersuite for $Ciphersuite {
      type F = $lib::Scalar;
      type G = $lib::ProjectivePoint;
      type H = Sha256;

      const ID: &'static [u8] = $ID;

      fn generator() -> Self::G {
        $lib::ProjectivePoint::GENERATOR
      }

      fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F {
        // While one of these two libraries does support directly hashing to the Scalar field, the
        // other doesn't. While that's probably an oversight, this is a universally working method

        // This method is from
        // https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html
        // Specifically, Section 5

        // While that draft, overall, is intended for hashing to curves, that necessitates
        // detailing how to hash to a finite field. The draft comments that its mechanism for
        // doing so, which it uses to derive field elements, is also applicable to the scalar field

        // The hash_to_field function is intended to provide unbiased values
        // In order to do so, a wide reduction from an extra k bits is applied, minimizing bias to
        // 2^-k
        // k is intended to be the bits of security of the suite, which is 128 for secp256k1 and
        // P-256
        const K: usize = 128;

        // L is the amount of bytes of material which should be used in the wide reduction
        // The 256 is for the bit-length of the primes, rounded up to the nearest byte threshold
        // This is a simplification of the formula from the end of section 5
        const L: usize = (256 + K) / 8; // 48

        // In order to perform this reduction, we need to use 48-byte numbers
        // First, convert the modulus to a 48-byte number
        // This is done by getting -1 as bytes, parsing it into a U384, and then adding back one
        let mut modulus = [0; L];
        // The byte repr of scalars will be 32 big-endian bytes
        // Set the lower 32 bytes of our 48-byte array accordingly
        modulus[16 ..].copy_from_slice(&(Self::F::ZERO - Self::F::ONE).to_bytes());
        // Use a checked_add + unwrap since this addition cannot fail (being a 32-byte value with
        // 48-bytes of space)
        // While a non-panicking saturating_add/wrapping_add could be used, they'd likely be less
        // performant
        let modulus = U384::from_be_slice(&modulus).checked_add(&U384::ONE).unwrap();

        // The defined P-256 and secp256k1 ciphersuites both use expand_message_xmd
        let mut wide = U384::from_be_bytes({
          let mut bytes = [0; 48];
          ExpandMsgXmd::<Sha256>::expand_message(&[msg], &[dst], 48)
            .unwrap()
            .fill_bytes(&mut bytes);
          bytes
        })
        .rem(&NonZero::new(modulus).unwrap())
        .to_be_bytes();

        // Now that this has been reduced back to a 32-byte value, grab the lower 32-bytes
        let mut array = *GenericArray::from_slice(&wide[16 ..]);
        let res = $lib::Scalar::from_repr(array).unwrap();

        // Zeroize the temp values we can due to the possibility hash_to_F is being used for nonces
        wide.zeroize();
        array.zeroize();
        res
      }
    }
  };
}

#[cfg(test)]
fn test_oversize_dst<C: Ciphersuite>() {
  use sha2::Digest;

  // The draft specifies DSTs >255 bytes should be hashed into a 32-byte DST
  let oversize_dst = [0x00; 256];
  let actual_dst = Sha256::digest([b"H2C-OVERSIZE-DST-".as_ref(), &oversize_dst].concat());
  // Test the hash_to_F function handles this
  // If it didn't, these would return different values
  assert_eq!(C::hash_to_F(&oversize_dst, &[]), C::hash_to_F(&actual_dst, &[]));
}

/// Ciphersuite for Secp256k1.
///
/// hash_to_F is implemented via the IETF draft for hash to curve's hash_to_field (v16).
#[cfg(feature = "secp256k1")]
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct Secp256k1;
#[cfg(feature = "secp256k1")]
kp_curve!("secp256k1", k256, Secp256k1, b"secp256k1");
#[cfg(feature = "secp256k1")]
#[test]
fn test_secp256k1() {
  ff_group_tests::group::test_prime_group_bits::<_, k256::ProjectivePoint>(&mut rand_core::OsRng);

  // Ideally, a test vector from hash_to_field (not FROST) would be here
  // Unfortunately, the IETF draft only provides vectors for field elements, not scalars
  // Vectors have been requested in
  // https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/issues/343

  assert_eq!(
    Secp256k1::hash_to_F(
      b"FROST-secp256k1-SHA256-v11nonce",
      &hex::decode(
        "\
80cbea5e405d169999d8c4b30b755fedb26ab07ec8198cda4873ed8ce5e16773\
08f89ffe80ac94dcb920c26f3f46140bfc7f95b493f8310f5fc1ea2b01f4254c"
      )
      .unwrap()
    )
    .to_repr()
    .iter()
    .copied()
    .collect::<Vec<_>>(),
    hex::decode("acc83278035223c1ba464e2d11bfacfc872b2b23e1041cf5f6130da21e4d8068").unwrap()
  );

  test_oversize_dst::<Secp256k1>();
}

/// Ciphersuite for P-256.
///
/// hash_to_F is implemented via the IETF draft for hash to curve's hash_to_field (v16).
#[cfg(feature = "p256")]
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct P256;
#[cfg(feature = "p256")]
kp_curve!("p256", p256, P256, b"P-256");
#[cfg(feature = "p256")]
#[test]
fn test_p256() {
  ff_group_tests::group::test_prime_group_bits::<_, p256::ProjectivePoint>(&mut rand_core::OsRng);

  assert_eq!(
    P256::hash_to_F(
      b"FROST-P256-SHA256-v11nonce",
      &hex::decode(
        "\
f4e8cf80aec3f888d997900ac7e3e349944b5a6b47649fc32186d2f1238103c6\
0c9c1a0fe806c184add50bbdcac913dda73e482daf95dcb9f35dbb0d8a9f7731"
      )
      .unwrap()
    )
    .to_repr()
    .iter()
    .copied()
    .collect::<Vec<_>>(),
    hex::decode("f871dfcf6bcd199342651adc361b92c941cb6a0d8c8c1a3b91d79e2c1bf3722d").unwrap()
  );

  test_oversize_dst::<P256>();
}