1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
use core::{ops::Deref, fmt};
use std::{io, collections::HashMap};

use thiserror::Error;

use zeroize::{Zeroize, Zeroizing};
use rand_core::{RngCore, CryptoRng};

use chacha20::{
  cipher::{crypto_common::KeyIvInit, StreamCipher},
  Key as Cc20Key, Nonce as Cc20Iv, ChaCha20,
};

use transcript::{Transcript, RecommendedTranscript};

#[cfg(test)]
use ciphersuite::group::ff::Field;
use ciphersuite::{group::GroupEncoding, Ciphersuite};
use multiexp::BatchVerifier;

use schnorr::SchnorrSignature;
use dleq::DLEqProof;

use crate::{Participant, ThresholdParams};

mod sealed {
  use super::*;

  pub trait ReadWrite: Sized {
    fn read<R: io::Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self>;
    fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()>;

    fn serialize(&self) -> Vec<u8> {
      let mut buf = vec![];
      self.write(&mut buf).unwrap();
      buf
    }
  }

  pub trait Message: Clone + PartialEq + Eq + fmt::Debug + Zeroize + ReadWrite {}
  impl<M: Clone + PartialEq + Eq + fmt::Debug + Zeroize + ReadWrite> Message for M {}

  pub trait Encryptable: Clone + AsRef<[u8]> + AsMut<[u8]> + Zeroize + ReadWrite {}
  impl<E: Clone + AsRef<[u8]> + AsMut<[u8]> + Zeroize + ReadWrite> Encryptable for E {}
}
pub(crate) use sealed::*;

/// Wraps a message with a key to use for encryption in the future.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct EncryptionKeyMessage<C: Ciphersuite, M: Message> {
  msg: M,
  enc_key: C::G,
}

// Doesn't impl ReadWrite so that doesn't need to be imported
impl<C: Ciphersuite, M: Message> EncryptionKeyMessage<C, M> {
  pub fn read<R: io::Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self> {
    Ok(Self { msg: M::read(reader, params)?, enc_key: C::read_G(reader)? })
  }

  pub fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
    self.msg.write(writer)?;
    writer.write_all(self.enc_key.to_bytes().as_ref())
  }

  pub fn serialize(&self) -> Vec<u8> {
    let mut buf = vec![];
    self.write(&mut buf).unwrap();
    buf
  }

  #[cfg(any(test, feature = "tests"))]
  pub(crate) fn enc_key(&self) -> C::G {
    self.enc_key
  }
}

/// An encrypted message, with a per-message encryption key enabling revealing specific messages
/// without side effects.
#[derive(Clone, Zeroize)]
pub struct EncryptedMessage<C: Ciphersuite, E: Encryptable> {
  key: C::G,
  // Also include a proof-of-possession for the key.
  // If this proof-of-possession wasn't here, Eve could observe Alice encrypt to Bob with key X,
  // then send Bob a message also claiming to use X.
  // While Eve's message would fail to meaningfully decrypt, Bob would then use this to create a
  // blame argument against Eve. When they do, they'd reveal bX, revealing Alice's message to Bob.
  // This is a massive side effect which could break some protocols, in the worst case.
  // While Eve can still reuse their own keys, causing Bob to leak all messages by revealing for
  // any single one, that's effectively Eve revealing themselves, and not considered relevant.
  pop: SchnorrSignature<C>,
  msg: Zeroizing<E>,
}

fn ecdh<C: Ciphersuite>(private: &Zeroizing<C::F>, public: C::G) -> Zeroizing<C::G> {
  Zeroizing::new(public * private.deref())
}

// Each ecdh must be distinct. Reuse of an ecdh for multiple ciphers will cause the messages to be
// leaked.
fn cipher<C: Ciphersuite>(context: &str, ecdh: &Zeroizing<C::G>) -> ChaCha20 {
  // Ideally, we'd box this transcript with ZAlloc, yet that's only possible on nightly
  // TODO: https://github.com/serai-dex/serai/issues/151
  let mut transcript = RecommendedTranscript::new(b"DKG Encryption v0.2");
  transcript.append_message(b"context", context.as_bytes());

  transcript.domain_separate(b"encryption_key");

  let mut ecdh = ecdh.to_bytes();
  transcript.append_message(b"shared_key", ecdh.as_ref());
  ecdh.as_mut().zeroize();

  let zeroize = |buf: &mut [u8]| buf.zeroize();

  let mut key = Cc20Key::default();
  let mut challenge = transcript.challenge(b"key");
  key.copy_from_slice(&challenge[.. 32]);
  zeroize(challenge.as_mut());

  // Since the key is single-use, it doesn't matter what we use for the IV
  // The issue is key + IV reuse. If we never reuse the key, we can't have the opportunity to
  // reuse a nonce
  // Use a static IV in acknowledgement of this
  let mut iv = Cc20Iv::default();
  // The \0 is to satisfy the length requirement (12), not to be null terminated
  iv.copy_from_slice(b"DKG IV v0.2\0");

  // ChaCha20 has the same commentary as the transcript regarding ZAlloc
  // TODO: https://github.com/serai-dex/serai/issues/151
  let res = ChaCha20::new(&key, &iv);
  zeroize(key.as_mut());
  res
}

fn encrypt<R: RngCore + CryptoRng, C: Ciphersuite, E: Encryptable>(
  rng: &mut R,
  context: &str,
  from: Participant,
  to: C::G,
  mut msg: Zeroizing<E>,
) -> EncryptedMessage<C, E> {
  /*
  The following code could be used to replace the requirement on an RNG here.
  It's just currently not an issue to require taking in an RNG here.
  let last = self.last_enc_key.to_bytes();
  self.last_enc_key = C::hash_to_F(b"encryption_base", last.as_ref());
  let key = C::hash_to_F(b"encryption_key", last.as_ref());
  last.as_mut().zeroize();
  */

  // Generate a new key for this message, satisfying cipher's requirement of distinct keys per
  // message, and enabling revealing this message without revealing any others
  let key = Zeroizing::new(C::random_nonzero_F(rng));
  cipher::<C>(context, &ecdh::<C>(&key, to)).apply_keystream(msg.as_mut().as_mut());

  let pub_key = C::generator() * key.deref();
  let nonce = Zeroizing::new(C::random_nonzero_F(rng));
  let pub_nonce = C::generator() * nonce.deref();
  EncryptedMessage {
    key: pub_key,
    pop: SchnorrSignature::sign(
      &key,
      nonce,
      pop_challenge::<C>(context, pub_nonce, pub_key, from, msg.deref().as_ref()),
    ),
    msg,
  }
}

impl<C: Ciphersuite, E: Encryptable> EncryptedMessage<C, E> {
  pub fn read<R: io::Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self> {
    Ok(Self {
      key: C::read_G(reader)?,
      pop: SchnorrSignature::<C>::read(reader)?,
      msg: Zeroizing::new(E::read(reader, params)?),
    })
  }

  pub fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
    writer.write_all(self.key.to_bytes().as_ref())?;
    self.pop.write(writer)?;
    self.msg.write(writer)
  }

  pub fn serialize(&self) -> Vec<u8> {
    let mut buf = vec![];
    self.write(&mut buf).unwrap();
    buf
  }

  #[cfg(test)]
  pub(crate) fn invalidate_pop(&mut self) {
    self.pop.s += C::F::ONE;
  }

  #[cfg(test)]
  pub(crate) fn invalidate_msg<R: RngCore + CryptoRng>(
    &mut self,
    rng: &mut R,
    context: &str,
    from: Participant,
  ) {
    // Invalidate the message by specifying a new key/Schnorr PoP
    // This will cause all initial checks to pass, yet a decrypt to gibberish
    let key = Zeroizing::new(C::random_nonzero_F(rng));
    let pub_key = C::generator() * key.deref();
    let nonce = Zeroizing::new(C::random_nonzero_F(rng));
    let pub_nonce = C::generator() * nonce.deref();
    self.key = pub_key;
    self.pop = SchnorrSignature::sign(
      &key,
      nonce,
      pop_challenge::<C>(context, pub_nonce, pub_key, from, self.msg.deref().as_ref()),
    );
  }

  // Assumes the encrypted message is a secret share.
  #[cfg(test)]
  pub(crate) fn invalidate_share_serialization<R: RngCore + CryptoRng>(
    &mut self,
    rng: &mut R,
    context: &str,
    from: Participant,
    to: C::G,
  ) {
    use ciphersuite::group::ff::PrimeField;

    let mut repr = <C::F as PrimeField>::Repr::default();
    for b in repr.as_mut() {
      *b = 255;
    }
    // Tries to guarantee the above assumption.
    assert_eq!(repr.as_ref().len(), self.msg.as_ref().len());
    // Checks that this isn't over a field where this is somehow valid
    assert!(!bool::from(C::F::from_repr(repr).is_some()));

    self.msg.as_mut().as_mut().copy_from_slice(repr.as_ref());
    *self = encrypt(rng, context, from, to, self.msg.clone());
  }

  // Assumes the encrypted message is a secret share.
  #[cfg(test)]
  pub(crate) fn invalidate_share_value<R: RngCore + CryptoRng>(
    &mut self,
    rng: &mut R,
    context: &str,
    from: Participant,
    to: C::G,
  ) {
    use ciphersuite::group::ff::PrimeField;

    // Assumes the share isn't randomly 1
    let repr = C::F::ONE.to_repr();
    self.msg.as_mut().as_mut().copy_from_slice(repr.as_ref());
    *self = encrypt(rng, context, from, to, self.msg.clone());
  }
}

/// A proof that the provided encryption key is a legitimately derived shared key for some message.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct EncryptionKeyProof<C: Ciphersuite> {
  key: Zeroizing<C::G>,
  dleq: DLEqProof<C::G>,
}

impl<C: Ciphersuite> EncryptionKeyProof<C> {
  pub fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
    Ok(Self { key: Zeroizing::new(C::read_G(reader)?), dleq: DLEqProof::read(reader)? })
  }

  pub fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
    writer.write_all(self.key.to_bytes().as_ref())?;
    self.dleq.write(writer)
  }

  pub fn serialize(&self) -> Vec<u8> {
    let mut buf = vec![];
    self.write(&mut buf).unwrap();
    buf
  }

  #[cfg(test)]
  pub(crate) fn invalidate_key(&mut self) {
    *self.key += C::generator();
  }

  #[cfg(test)]
  pub(crate) fn invalidate_dleq(&mut self) {
    let mut buf = vec![];
    self.dleq.write(&mut buf).unwrap();
    // Adds one to c since this is serialized c, s
    // Adding one to c will leave a validly serialized c
    // Adding one to s may leave an invalidly serialized s
    buf[0] = buf[0].wrapping_add(1);
    self.dleq = DLEqProof::read::<&[u8]>(&mut buf.as_ref()).unwrap();
  }
}

// This doesn't need to take the msg. It just doesn't hurt as an extra layer.
// This still doesn't mean the DKG offers an authenticated channel. The per-message keys have no
// root of trust other than their existence in the assumed-to-exist external authenticated channel.
fn pop_challenge<C: Ciphersuite>(
  context: &str,
  nonce: C::G,
  key: C::G,
  sender: Participant,
  msg: &[u8],
) -> C::F {
  let mut transcript = RecommendedTranscript::new(b"DKG Encryption Key Proof of Possession v0.2");
  transcript.append_message(b"context", context.as_bytes());

  transcript.domain_separate(b"proof_of_possession");

  transcript.append_message(b"nonce", nonce.to_bytes());
  transcript.append_message(b"key", key.to_bytes());
  // This is sufficient to prevent the attack this is meant to stop
  transcript.append_message(b"sender", sender.to_bytes());
  // This, as written above, doesn't hurt
  transcript.append_message(b"message", msg);
  // While this is a PoK and a PoP, it's called a PoP here since the important part is its owner
  // Elsewhere, where we use the term PoK, the important part is that it isn't some inverse, with
  // an unknown to anyone discrete log, breaking the system
  C::hash_to_F(b"DKG-encryption-proof_of_possession", &transcript.challenge(b"schnorr"))
}

fn encryption_key_transcript(context: &str) -> RecommendedTranscript {
  let mut transcript = RecommendedTranscript::new(b"DKG Encryption Key Correctness Proof v0.2");
  transcript.append_message(b"context", context.as_bytes());
  transcript
}

#[derive(Clone, Copy, PartialEq, Eq, Debug, Error)]
pub(crate) enum DecryptionError {
  #[error("accused provided an invalid signature")]
  InvalidSignature,
  #[error("accuser provided an invalid decryption key")]
  InvalidProof,
}

// A simple box for managing encryption.
#[derive(Clone)]
pub(crate) struct Encryption<C: Ciphersuite> {
  context: String,
  i: Option<Participant>,
  enc_key: Zeroizing<C::F>,
  enc_pub_key: C::G,
  enc_keys: HashMap<Participant, C::G>,
}

impl<C: Ciphersuite> fmt::Debug for Encryption<C> {
  fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
    fmt
      .debug_struct("Encryption")
      .field("context", &self.context)
      .field("i", &self.i)
      .field("enc_pub_key", &self.enc_pub_key)
      .field("enc_keys", &self.enc_keys)
      .finish_non_exhaustive()
  }
}

impl<C: Ciphersuite> Zeroize for Encryption<C> {
  fn zeroize(&mut self) {
    self.enc_key.zeroize();
    self.enc_pub_key.zeroize();
    for (_, mut value) in self.enc_keys.drain() {
      value.zeroize();
    }
  }
}

impl<C: Ciphersuite> Encryption<C> {
  pub(crate) fn new<R: RngCore + CryptoRng>(
    context: String,
    i: Option<Participant>,
    rng: &mut R,
  ) -> Self {
    let enc_key = Zeroizing::new(C::random_nonzero_F(rng));
    Self {
      context,
      i,
      enc_pub_key: C::generator() * enc_key.deref(),
      enc_key,
      enc_keys: HashMap::new(),
    }
  }

  pub(crate) fn registration<M: Message>(&self, msg: M) -> EncryptionKeyMessage<C, M> {
    EncryptionKeyMessage { msg, enc_key: self.enc_pub_key }
  }

  pub(crate) fn register<M: Message>(
    &mut self,
    participant: Participant,
    msg: EncryptionKeyMessage<C, M>,
  ) -> M {
    assert!(
      !self.enc_keys.contains_key(&participant),
      "Re-registering encryption key for a participant"
    );
    self.enc_keys.insert(participant, msg.enc_key);
    msg.msg
  }

  pub(crate) fn encrypt<R: RngCore + CryptoRng, E: Encryptable>(
    &self,
    rng: &mut R,
    participant: Participant,
    msg: Zeroizing<E>,
  ) -> EncryptedMessage<C, E> {
    encrypt(rng, &self.context, self.i.unwrap(), self.enc_keys[&participant], msg)
  }

  pub(crate) fn decrypt<R: RngCore + CryptoRng, I: Copy + Zeroize, E: Encryptable>(
    &self,
    rng: &mut R,
    batch: &mut BatchVerifier<I, C::G>,
    // Uses a distinct batch ID so if this batch verifier is reused, we know its the PoP aspect
    // which failed, and therefore to use None for the blame
    batch_id: I,
    from: Participant,
    mut msg: EncryptedMessage<C, E>,
  ) -> (Zeroizing<E>, EncryptionKeyProof<C>) {
    msg.pop.batch_verify(
      rng,
      batch,
      batch_id,
      msg.key,
      pop_challenge::<C>(&self.context, msg.pop.R, msg.key, from, msg.msg.deref().as_ref()),
    );

    let key = ecdh::<C>(&self.enc_key, msg.key);
    cipher::<C>(&self.context, &key).apply_keystream(msg.msg.as_mut().as_mut());
    (
      msg.msg,
      EncryptionKeyProof {
        key,
        dleq: DLEqProof::prove(
          rng,
          &mut encryption_key_transcript(&self.context),
          &[C::generator(), msg.key],
          &self.enc_key,
        ),
      },
    )
  }

  // Given a message, and the intended decryptor, and a proof for its key, decrypt the message.
  // Returns None if the key was wrong.
  pub(crate) fn decrypt_with_proof<E: Encryptable>(
    &self,
    from: Participant,
    decryptor: Participant,
    mut msg: EncryptedMessage<C, E>,
    // There's no encryption key proof if the accusation is of an invalid signature
    proof: Option<EncryptionKeyProof<C>>,
  ) -> Result<Zeroizing<E>, DecryptionError> {
    if !msg.pop.verify(
      msg.key,
      pop_challenge::<C>(&self.context, msg.pop.R, msg.key, from, msg.msg.deref().as_ref()),
    ) {
      Err(DecryptionError::InvalidSignature)?;
    }

    if let Some(proof) = proof {
      // Verify this is the decryption key for this message
      proof
        .dleq
        .verify(
          &mut encryption_key_transcript(&self.context),
          &[C::generator(), msg.key],
          &[self.enc_keys[&decryptor], *proof.key],
        )
        .map_err(|_| DecryptionError::InvalidProof)?;

      cipher::<C>(&self.context, &proof.key).apply_keystream(msg.msg.as_mut().as_mut());
      Ok(msg.msg)
    } else {
      Err(DecryptionError::InvalidProof)
    }
  }
}