1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
use core::{marker::PhantomData, ops::Deref, fmt};
use std::{
  io::{self, Read, Write},
  collections::HashMap,
};

use rand_core::{RngCore, CryptoRng};

use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};

use transcript::{Transcript, RecommendedTranscript};

use ciphersuite::{
  group::{
    ff::{Field, PrimeField},
    Group, GroupEncoding,
  },
  Ciphersuite,
};
use multiexp::{multiexp_vartime, BatchVerifier};

use schnorr::SchnorrSignature;

use crate::{
  Participant, DkgError, ThresholdParams, ThresholdCore, validate_map,
  encryption::{
    ReadWrite, EncryptionKeyMessage, EncryptedMessage, Encryption, EncryptionKeyProof,
    DecryptionError,
  },
};

type FrostError<C> = DkgError<EncryptionKeyProof<C>>;

#[allow(non_snake_case)]
fn challenge<C: Ciphersuite>(context: &str, l: Participant, R: &[u8], Am: &[u8]) -> C::F {
  let mut transcript = RecommendedTranscript::new(b"DKG FROST v0.2");
  transcript.domain_separate(b"schnorr_proof_of_knowledge");
  transcript.append_message(b"context", context.as_bytes());
  transcript.append_message(b"participant", l.to_bytes());
  transcript.append_message(b"nonce", R);
  transcript.append_message(b"commitments", Am);
  C::hash_to_F(b"DKG-FROST-proof_of_knowledge-0", &transcript.challenge(b"schnorr"))
}

/// The commitments message, intended to be broadcast to all other parties.
///
/// Every participant should only provide one set of commitments to all parties. If any
/// participant sends multiple sets of commitments, they are faulty and should be presumed
/// malicious. As this library does not handle networking, it is unable to detect if any
/// participant is so faulty. That responsibility lies with the caller.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct Commitments<C: Ciphersuite> {
  commitments: Vec<C::G>,
  cached_msg: Vec<u8>,
  sig: SchnorrSignature<C>,
}

impl<C: Ciphersuite> ReadWrite for Commitments<C> {
  fn read<R: Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self> {
    let mut commitments = Vec::with_capacity(params.t().into());
    let mut cached_msg = vec![];

    #[allow(non_snake_case)]
    let mut read_G = || -> io::Result<C::G> {
      let mut buf = <C::G as GroupEncoding>::Repr::default();
      reader.read_exact(buf.as_mut())?;
      let point = C::read_G(&mut buf.as_ref())?;
      cached_msg.extend(buf.as_ref());
      Ok(point)
    };

    for _ in 0 .. params.t() {
      commitments.push(read_G()?);
    }

    Ok(Commitments { commitments, cached_msg, sig: SchnorrSignature::read(reader)? })
  }

  fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
    writer.write_all(&self.cached_msg)?;
    self.sig.write(writer)
  }
}

/// State machine to begin the key generation protocol.
#[derive(Debug, Zeroize)]
pub struct KeyGenMachine<C: Ciphersuite> {
  params: ThresholdParams,
  context: String,
  _curve: PhantomData<C>,
}

impl<C: Ciphersuite> KeyGenMachine<C> {
  /// Create a new machine to generate a key.
  ///
  /// The context string should be unique among multisigs.
  pub fn new(params: ThresholdParams, context: String) -> KeyGenMachine<C> {
    KeyGenMachine { params, context, _curve: PhantomData }
  }

  /// Start generating a key according to the FROST DKG spec.
  ///
  /// Returns a commitments message to be sent to all parties over an authenticated channel. If any
  /// party submits multiple sets of commitments, they MUST be treated as malicious.
  pub fn generate_coefficients<R: RngCore + CryptoRng>(
    self,
    rng: &mut R,
  ) -> (SecretShareMachine<C>, EncryptionKeyMessage<C, Commitments<C>>) {
    let t = usize::from(self.params.t);
    let mut coefficients = Vec::with_capacity(t);
    let mut commitments = Vec::with_capacity(t);
    let mut cached_msg = vec![];

    for i in 0 .. t {
      // Step 1: Generate t random values to form a polynomial with
      coefficients.push(Zeroizing::new(C::random_nonzero_F(&mut *rng)));
      // Step 3: Generate public commitments
      commitments.push(C::generator() * coefficients[i].deref());
      cached_msg.extend(commitments[i].to_bytes().as_ref());
    }

    // Step 2: Provide a proof of knowledge
    let r = Zeroizing::new(C::random_nonzero_F(rng));
    let nonce = C::generator() * r.deref();
    let sig = SchnorrSignature::<C>::sign(
      &coefficients[0],
      // This could be deterministic as the PoK is a singleton never opened up to cooperative
      // discussion
      // There's no reason to spend the time and effort to make this deterministic besides a
      // general obsession with canonicity and determinism though
      r,
      challenge::<C>(&self.context, self.params.i(), nonce.to_bytes().as_ref(), &cached_msg),
    );

    // Additionally create an encryption mechanism to protect the secret shares
    let encryption = Encryption::new(self.context.clone(), Some(self.params.i), rng);

    // Step 4: Broadcast
    let msg =
      encryption.registration(Commitments { commitments: commitments.clone(), cached_msg, sig });
    (
      SecretShareMachine {
        params: self.params,
        context: self.context,
        coefficients,
        our_commitments: commitments,
        encryption,
      },
      msg,
    )
  }
}

fn polynomial<F: PrimeField + Zeroize>(
  coefficients: &[Zeroizing<F>],
  l: Participant,
) -> Zeroizing<F> {
  let l = F::from(u64::from(u16::from(l)));
  // This should never be reached since Participant is explicitly non-zero
  assert!(l != F::ZERO, "zero participant passed to polynomial");
  let mut share = Zeroizing::new(F::ZERO);
  for (idx, coefficient) in coefficients.iter().rev().enumerate() {
    *share += coefficient.deref();
    if idx != (coefficients.len() - 1) {
      *share *= l;
    }
  }
  share
}

/// The secret share message, to be sent to the party it's intended for over an authenticated
/// channel.
///
/// If any participant sends multiple secret shares to another participant, they are faulty.
// This should presumably be written as SecretShare(Zeroizing<F::Repr>).
// It's unfortunately not possible as F::Repr doesn't have Zeroize as a bound.
// The encryption system also explicitly uses Zeroizing<M> so it can ensure anything being
// encrypted is within Zeroizing. Accordingly, internally having Zeroizing would be redundant.
#[derive(Clone, PartialEq, Eq)]
pub struct SecretShare<F: PrimeField>(F::Repr);
impl<F: PrimeField> AsRef<[u8]> for SecretShare<F> {
  fn as_ref(&self) -> &[u8] {
    self.0.as_ref()
  }
}
impl<F: PrimeField> AsMut<[u8]> for SecretShare<F> {
  fn as_mut(&mut self) -> &mut [u8] {
    self.0.as_mut()
  }
}
impl<F: PrimeField> fmt::Debug for SecretShare<F> {
  fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
    fmt.debug_struct("SecretShare").finish_non_exhaustive()
  }
}
impl<F: PrimeField> Zeroize for SecretShare<F> {
  fn zeroize(&mut self) {
    self.0.as_mut().zeroize()
  }
}
// Still manually implement ZeroizeOnDrop to ensure these don't stick around.
// We could replace Zeroizing<M> with a bound M: ZeroizeOnDrop.
// Doing so would potentially fail to highlight the expected behavior with these and remove a layer
// of depth.
impl<F: PrimeField> Drop for SecretShare<F> {
  fn drop(&mut self) {
    self.zeroize();
  }
}
impl<F: PrimeField> ZeroizeOnDrop for SecretShare<F> {}

impl<F: PrimeField> ReadWrite for SecretShare<F> {
  fn read<R: Read>(reader: &mut R, _: ThresholdParams) -> io::Result<Self> {
    let mut repr = F::Repr::default();
    reader.read_exact(repr.as_mut())?;
    Ok(SecretShare(repr))
  }

  fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
    writer.write_all(self.0.as_ref())
  }
}

/// Advancement of the key generation state machine.
#[derive(Zeroize)]
pub struct SecretShareMachine<C: Ciphersuite> {
  params: ThresholdParams,
  context: String,
  coefficients: Vec<Zeroizing<C::F>>,
  our_commitments: Vec<C::G>,
  encryption: Encryption<C>,
}

impl<C: Ciphersuite> fmt::Debug for SecretShareMachine<C> {
  fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
    fmt
      .debug_struct("SecretShareMachine")
      .field("params", &self.params)
      .field("context", &self.context)
      .field("our_commitments", &self.our_commitments)
      .field("encryption", &self.encryption)
      .finish_non_exhaustive()
  }
}

impl<C: Ciphersuite> SecretShareMachine<C> {
  /// Verify the data from the previous round (canonicity, PoKs, message authenticity)
  #[allow(clippy::type_complexity)]
  fn verify_r1<R: RngCore + CryptoRng>(
    &mut self,
    rng: &mut R,
    mut commitment_msgs: HashMap<Participant, EncryptionKeyMessage<C, Commitments<C>>>,
  ) -> Result<HashMap<Participant, Vec<C::G>>, FrostError<C>> {
    validate_map(
      &commitment_msgs,
      &(1 ..= self.params.n()).map(Participant).collect::<Vec<_>>(),
      self.params.i(),
    )?;

    let mut batch = BatchVerifier::<Participant, C::G>::new(commitment_msgs.len());
    let mut commitments = HashMap::new();
    for l in (1 ..= self.params.n()).map(Participant) {
      let Some(msg) = commitment_msgs.remove(&l) else { continue };
      let mut msg = self.encryption.register(l, msg);

      if msg.commitments.len() != self.params.t().into() {
        Err(FrostError::InvalidCommitments(l))?;
      }

      // Step 5: Validate each proof of knowledge
      // This is solely the prep step for the latter batch verification
      msg.sig.batch_verify(
        rng,
        &mut batch,
        l,
        msg.commitments[0],
        challenge::<C>(&self.context, l, msg.sig.R.to_bytes().as_ref(), &msg.cached_msg),
      );

      commitments.insert(l, msg.commitments.drain(..).collect::<Vec<_>>());
    }

    batch.verify_vartime_with_vartime_blame().map_err(FrostError::InvalidCommitments)?;

    commitments.insert(self.params.i, self.our_commitments.drain(..).collect());
    Ok(commitments)
  }

  /// Continue generating a key.
  ///
  /// Takes in everyone else's commitments. Returns a HashMap of encrypted secret shares to be sent
  /// over authenticated channels to their relevant counterparties.
  ///
  /// If any participant sends multiple secret shares to another participant, they are faulty.
  #[allow(clippy::type_complexity)]
  pub fn generate_secret_shares<R: RngCore + CryptoRng>(
    mut self,
    rng: &mut R,
    commitments: HashMap<Participant, EncryptionKeyMessage<C, Commitments<C>>>,
  ) -> Result<
    (KeyMachine<C>, HashMap<Participant, EncryptedMessage<C, SecretShare<C::F>>>),
    FrostError<C>,
  > {
    let commitments = self.verify_r1(&mut *rng, commitments)?;

    // Step 1: Generate secret shares for all other parties
    let mut res = HashMap::new();
    for l in (1 ..= self.params.n()).map(Participant) {
      // Don't insert our own shares to the byte buffer which is meant to be sent around
      // An app developer could accidentally send it. Best to keep this black boxed
      if l == self.params.i() {
        continue;
      }

      let mut share = polynomial(&self.coefficients, l);
      let share_bytes = Zeroizing::new(SecretShare::<C::F>(share.to_repr()));
      share.zeroize();
      res.insert(l, self.encryption.encrypt(rng, l, share_bytes));
    }

    // Calculate our own share
    let share = polynomial(&self.coefficients, self.params.i());
    self.coefficients.zeroize();

    Ok((
      KeyMachine { params: self.params, secret: share, commitments, encryption: self.encryption },
      res,
    ))
  }
}

/// Advancement of the the secret share state machine.
///
/// This machine will 'complete' the protocol, by a local perspective. In order to be secure,
/// the parties must confirm having successfully completed the protocol (an effort out of scope to
/// this library), yet this is modeled by one more state transition (BlameMachine).
pub struct KeyMachine<C: Ciphersuite> {
  params: ThresholdParams,
  secret: Zeroizing<C::F>,
  commitments: HashMap<Participant, Vec<C::G>>,
  encryption: Encryption<C>,
}

impl<C: Ciphersuite> fmt::Debug for KeyMachine<C> {
  fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
    fmt
      .debug_struct("KeyMachine")
      .field("params", &self.params)
      .field("commitments", &self.commitments)
      .field("encryption", &self.encryption)
      .finish_non_exhaustive()
  }
}

impl<C: Ciphersuite> Zeroize for KeyMachine<C> {
  fn zeroize(&mut self) {
    self.params.zeroize();
    self.secret.zeroize();
    for commitments in self.commitments.values_mut() {
      commitments.zeroize();
    }
    self.encryption.zeroize();
  }
}

// Calculate the exponent for a given participant and apply it to a series of commitments
// Initially used with the actual commitments to verify the secret share, later used with
// stripes to generate the verification shares
fn exponential<C: Ciphersuite>(i: Participant, values: &[C::G]) -> Vec<(C::F, C::G)> {
  let i = C::F::from(u16::from(i).into());
  let mut res = Vec::with_capacity(values.len());
  (0 .. values.len()).fold(C::F::ONE, |exp, l| {
    res.push((exp, values[l]));
    exp * i
  });
  res
}

fn share_verification_statements<C: Ciphersuite>(
  target: Participant,
  commitments: &[C::G],
  mut share: Zeroizing<C::F>,
) -> Vec<(C::F, C::G)> {
  // This can be insecurely linearized from n * t to just n using the below sums for a given
  // stripe. Doing so uses naive addition which is subject to malleability. The only way to
  // ensure that malleability isn't present is to use this n * t algorithm, which runs
  // per sender and not as an aggregate of all senders, which also enables blame
  let mut values = exponential::<C>(target, commitments);

  // Perform the share multiplication outside of the multiexp to minimize stack copying
  // While the multiexp BatchVerifier does zeroize its flattened multiexp, and itself, it still
  // converts whatever we give to an iterator and then builds a Vec internally, welcoming copies
  let neg_share_pub = C::generator() * -*share;
  share.zeroize();
  values.push((C::F::ONE, neg_share_pub));

  values
}

#[derive(Clone, Copy, Hash, Debug, Zeroize)]
enum BatchId {
  Decryption(Participant),
  Share(Participant),
}

impl<C: Ciphersuite> KeyMachine<C> {
  /// Calculate our share given the shares sent to us.
  ///
  /// Returns a BlameMachine usable to determine if faults in the protocol occurred.
  ///
  /// This will error on, and return a blame proof for, the first-observed case of faulty behavior.
  pub fn calculate_share<R: RngCore + CryptoRng>(
    mut self,
    rng: &mut R,
    mut shares: HashMap<Participant, EncryptedMessage<C, SecretShare<C::F>>>,
  ) -> Result<BlameMachine<C>, FrostError<C>> {
    validate_map(
      &shares,
      &(1 ..= self.params.n()).map(Participant).collect::<Vec<_>>(),
      self.params.i(),
    )?;

    let mut batch = BatchVerifier::new(shares.len());
    let mut blames = HashMap::new();
    for (l, share_bytes) in shares.drain() {
      let (mut share_bytes, blame) =
        self.encryption.decrypt(rng, &mut batch, BatchId::Decryption(l), l, share_bytes);
      let share =
        Zeroizing::new(Option::<C::F>::from(C::F::from_repr(share_bytes.0)).ok_or_else(|| {
          FrostError::InvalidShare { participant: l, blame: Some(blame.clone()) }
        })?);
      share_bytes.zeroize();
      *self.secret += share.deref();

      blames.insert(l, blame);
      batch.queue(
        rng,
        BatchId::Share(l),
        share_verification_statements::<C>(self.params.i(), &self.commitments[&l], share),
      );
    }
    batch.verify_with_vartime_blame().map_err(|id| {
      let (l, blame) = match id {
        BatchId::Decryption(l) => (l, None),
        BatchId::Share(l) => (l, Some(blames.remove(&l).unwrap())),
      };
      FrostError::InvalidShare { participant: l, blame }
    })?;

    // Stripe commitments per t and sum them in advance. Calculating verification shares relies on
    // these sums so preprocessing them is a massive speedup
    // If these weren't just sums, yet the tables used in multiexp, this would be further optimized
    // As of right now, each multiexp will regenerate them
    let mut stripes = Vec::with_capacity(usize::from(self.params.t()));
    for t in 0 .. usize::from(self.params.t()) {
      stripes.push(self.commitments.values().map(|commitments| commitments[t]).sum());
    }

    // Calculate each user's verification share
    let mut verification_shares = HashMap::new();
    for i in (1 ..= self.params.n()).map(Participant) {
      verification_shares.insert(
        i,
        if i == self.params.i() {
          C::generator() * self.secret.deref()
        } else {
          multiexp_vartime(&exponential::<C>(i, &stripes))
        },
      );
    }

    let KeyMachine { commitments, encryption, params, secret } = self;
    Ok(BlameMachine {
      commitments,
      encryption,
      result: Some(ThresholdCore {
        params,
        secret_share: secret,
        group_key: stripes[0],
        verification_shares,
      }),
    })
  }
}

/// A machine capable of handling blame proofs.
pub struct BlameMachine<C: Ciphersuite> {
  commitments: HashMap<Participant, Vec<C::G>>,
  encryption: Encryption<C>,
  result: Option<ThresholdCore<C>>,
}

impl<C: Ciphersuite> fmt::Debug for BlameMachine<C> {
  fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
    fmt
      .debug_struct("BlameMachine")
      .field("commitments", &self.commitments)
      .field("encryption", &self.encryption)
      .finish_non_exhaustive()
  }
}

impl<C: Ciphersuite> Zeroize for BlameMachine<C> {
  fn zeroize(&mut self) {
    for commitments in self.commitments.values_mut() {
      commitments.zeroize();
    }
    self.encryption.zeroize();
    self.result.zeroize();
  }
}

impl<C: Ciphersuite> BlameMachine<C> {
  /// Mark the protocol as having been successfully completed, returning the generated keys.
  /// This should only be called after having confirmed, with all participants, successful
  /// completion.
  ///
  /// Confirming successful completion is not necessarily as simple as everyone reporting their
  /// completion. Everyone must also receive everyone's report of completion, entering into the
  /// territory of consensus protocols. This library does not handle that nor does it provide any
  /// tooling to do so. This function is solely intended to force users to acknowledge they're
  /// completing the protocol, not processing any blame.
  pub fn complete(self) -> ThresholdCore<C> {
    self.result.unwrap()
  }

  fn blame_internal(
    &self,
    sender: Participant,
    recipient: Participant,
    msg: EncryptedMessage<C, SecretShare<C::F>>,
    proof: Option<EncryptionKeyProof<C>>,
  ) -> Participant {
    let share_bytes = match self.encryption.decrypt_with_proof(sender, recipient, msg, proof) {
      Ok(share_bytes) => share_bytes,
      // If there's an invalid signature, the sender did not send a properly formed message
      Err(DecryptionError::InvalidSignature) => return sender,
      // Decryption will fail if the provided ECDH key wasn't correct for the given message
      Err(DecryptionError::InvalidProof) => return recipient,
    };

    let Some(share) = Option::<C::F>::from(C::F::from_repr(share_bytes.0)) else {
      // If this isn't a valid scalar, the sender is faulty
      return sender;
    };

    // If this isn't a valid share, the sender is faulty
    if !bool::from(
      multiexp_vartime(&share_verification_statements::<C>(
        recipient,
        &self.commitments[&sender],
        Zeroizing::new(share),
      ))
      .is_identity(),
    ) {
      return sender;
    }

    // The share was canonical and valid
    recipient
  }

  /// Given an accusation of fault, determine the faulty party (either the sender, who sent an
  /// invalid secret share, or the receiver, who claimed a valid secret share was invalid). No
  /// matter which, prevent completion of the machine, forcing an abort of the protocol.
  ///
  /// The message should be a copy of the encrypted secret share from the accused sender to the
  /// accusing recipient. This message must have been authenticated as actually having come from
  /// the sender in question.
  ///
  /// In order to enable detecting multiple faults, an `AdditionalBlameMachine` is returned, which
  /// can be used to determine further blame. These machines will process the same blame statements
  /// multiple times, always identifying blame. It is the caller's job to ensure they're unique in
  /// order to prevent multiple instances of blame over a single incident.
  pub fn blame(
    self,
    sender: Participant,
    recipient: Participant,
    msg: EncryptedMessage<C, SecretShare<C::F>>,
    proof: Option<EncryptionKeyProof<C>>,
  ) -> (AdditionalBlameMachine<C>, Participant) {
    let faulty = self.blame_internal(sender, recipient, msg, proof);
    (AdditionalBlameMachine(self), faulty)
  }
}

/// A machine capable of handling an arbitrary amount of additional blame proofs.
#[derive(Debug, Zeroize)]
pub struct AdditionalBlameMachine<C: Ciphersuite>(BlameMachine<C>);
impl<C: Ciphersuite> AdditionalBlameMachine<C> {
  /// Create an AdditionalBlameMachine capable of evaluating Blame regardless of if the caller was
  /// a member in the DKG protocol.
  ///
  /// Takes in the parameters for the DKG protocol and all of the participant's commitment
  /// messages.
  ///
  /// This constructor assumes the full validity of the commitment messages. They must be fully
  /// authenticated as having come from the supposed party and verified as valid. Usage of invalid
  /// commitments is considered undefined behavior, and may cause everything from inaccurate blame
  /// to panics.
  pub fn new<R: RngCore + CryptoRng>(
    rng: &mut R,
    context: String,
    n: u16,
    mut commitment_msgs: HashMap<Participant, EncryptionKeyMessage<C, Commitments<C>>>,
  ) -> Result<Self, FrostError<C>> {
    let mut commitments = HashMap::new();
    let mut encryption = Encryption::new(context, None, rng);
    for i in 1 ..= n {
      let i = Participant::new(i).unwrap();
      let Some(msg) = commitment_msgs.remove(&i) else { Err(DkgError::MissingParticipant(i))? };
      commitments.insert(i, encryption.register(i, msg).commitments);
    }
    Ok(AdditionalBlameMachine(BlameMachine { commitments, encryption, result: None }))
  }

  /// Given an accusation of fault, determine the faulty party (either the sender, who sent an
  /// invalid secret share, or the receiver, who claimed a valid secret share was invalid).
  ///
  /// The message should be a copy of the encrypted secret share from the accused sender to the
  /// accusing recipient. This message must have been authenticated as actually having come from
  /// the sender in question.
  ///
  /// This will process the same blame statement multiple times, always identifying blame. It is
  /// the caller's job to ensure they're unique in order to prevent multiple instances of blame
  /// over a single incident.
  pub fn blame(
    &self,
    sender: Participant,
    recipient: Participant,
    msg: EncryptedMessage<C, SecretShare<C::F>>,
    proof: Option<EncryptionKeyProof<C>>,
  ) -> Participant {
    self.0.blame_internal(sender, recipient, msg, proof)
  }
}