1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
use std::collections::HashMap;

use rand_core::{RngCore, CryptoRng};

use ciphersuite::Ciphersuite;

use crate::{
  Participant, ThresholdParams, ThresholdCore,
  pedpop::{Commitments, KeyGenMachine, SecretShare, KeyMachine},
  encryption::{EncryptionKeyMessage, EncryptedMessage},
  tests::{THRESHOLD, PARTICIPANTS, clone_without},
};

type PedPoPEncryptedMessage<C> = EncryptedMessage<C, SecretShare<<C as Ciphersuite>::F>>;
type PedPoPSecretShares<C> = HashMap<Participant, PedPoPEncryptedMessage<C>>;

const CONTEXT: &str = "DKG Test Key Generation";

// Commit, then return commitment messages, enc keys, and shares
#[allow(clippy::type_complexity)]
fn commit_enc_keys_and_shares<R: RngCore + CryptoRng, C: Ciphersuite>(
  rng: &mut R,
) -> (
  HashMap<Participant, KeyMachine<C>>,
  HashMap<Participant, EncryptionKeyMessage<C, Commitments<C>>>,
  HashMap<Participant, C::G>,
  HashMap<Participant, PedPoPSecretShares<C>>,
) {
  let mut machines = HashMap::new();
  let mut commitments = HashMap::new();
  let mut enc_keys = HashMap::new();
  for i in (1 ..= PARTICIPANTS).map(Participant) {
    let params = ThresholdParams::new(THRESHOLD, PARTICIPANTS, i).unwrap();
    let machine = KeyGenMachine::<C>::new(params, CONTEXT.to_string());
    let (machine, these_commitments) = machine.generate_coefficients(rng);
    machines.insert(i, machine);

    commitments.insert(
      i,
      EncryptionKeyMessage::read::<&[u8]>(&mut these_commitments.serialize().as_ref(), params)
        .unwrap(),
    );
    enc_keys.insert(i, commitments[&i].enc_key());
  }

  let mut secret_shares = HashMap::new();
  let machines = machines
    .drain()
    .map(|(l, machine)| {
      let (machine, mut shares) =
        machine.generate_secret_shares(rng, clone_without(&commitments, &l)).unwrap();
      let shares = shares
        .drain()
        .map(|(l, share)| {
          (
            l,
            EncryptedMessage::read::<&[u8]>(
              &mut share.serialize().as_ref(),
              // Only t/n actually matters, so hardcode i to 1 here
              ThresholdParams { t: THRESHOLD, n: PARTICIPANTS, i: Participant(1) },
            )
            .unwrap(),
          )
        })
        .collect::<HashMap<_, _>>();
      secret_shares.insert(l, shares);
      (l, machine)
    })
    .collect::<HashMap<_, _>>();

  (machines, commitments, enc_keys, secret_shares)
}

fn generate_secret_shares<C: Ciphersuite>(
  shares: &HashMap<Participant, PedPoPSecretShares<C>>,
  recipient: Participant,
) -> PedPoPSecretShares<C> {
  let mut our_secret_shares = HashMap::new();
  for (i, shares) in shares {
    if recipient == *i {
      continue;
    }
    our_secret_shares.insert(*i, shares[&recipient].clone());
  }
  our_secret_shares
}

/// Fully perform the PedPoP key generation algorithm.
pub fn pedpop_gen<R: RngCore + CryptoRng, C: Ciphersuite>(
  rng: &mut R,
) -> HashMap<Participant, ThresholdCore<C>> {
  let (mut machines, _, _, secret_shares) = commit_enc_keys_and_shares::<_, C>(rng);

  let mut verification_shares = None;
  let mut group_key = None;
  machines
    .drain()
    .map(|(i, machine)| {
      let our_secret_shares = generate_secret_shares(&secret_shares, i);
      let these_keys = machine.calculate_share(rng, our_secret_shares).unwrap().complete();

      // Verify the verification_shares are agreed upon
      if verification_shares.is_none() {
        verification_shares = Some(these_keys.verification_shares());
      }
      assert_eq!(verification_shares.as_ref().unwrap(), &these_keys.verification_shares());

      // Verify the group keys are agreed upon
      if group_key.is_none() {
        group_key = Some(these_keys.group_key());
      }
      assert_eq!(group_key.unwrap(), these_keys.group_key());

      (i, these_keys)
    })
    .collect::<HashMap<_, _>>()
}

#[cfg(test)]
mod literal {
  use rand_core::OsRng;

  use ciphersuite::Ristretto;

  use crate::{
    DkgError,
    encryption::EncryptionKeyProof,
    pedpop::{BlameMachine, AdditionalBlameMachine},
  };

  use super::*;

  const ONE: Participant = Participant(1);
  const TWO: Participant = Participant(2);

  fn test_blame(
    commitment_msgs: &HashMap<Participant, EncryptionKeyMessage<Ristretto, Commitments<Ristretto>>>,
    machines: Vec<BlameMachine<Ristretto>>,
    msg: &PedPoPEncryptedMessage<Ristretto>,
    blame: &Option<EncryptionKeyProof<Ristretto>>,
  ) {
    for machine in machines {
      let (additional, blamed) = machine.blame(ONE, TWO, msg.clone(), blame.clone());
      assert_eq!(blamed, ONE);
      // Verify additional blame also works
      assert_eq!(additional.blame(ONE, TWO, msg.clone(), blame.clone()), ONE);

      // Verify machines constructed with AdditionalBlameMachine::new work
      assert_eq!(
        AdditionalBlameMachine::new(
          &mut OsRng,
          CONTEXT.to_string(),
          PARTICIPANTS,
          commitment_msgs.clone()
        )
        .unwrap()
        .blame(ONE, TWO, msg.clone(), blame.clone()),
        ONE,
      );
    }
  }

  // TODO: Write a macro which expands to the following
  #[test]
  fn invalid_encryption_pop_blame() {
    let (mut machines, commitment_msgs, _, mut secret_shares) =
      commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);

    // Mutate the PoP of the encrypted message from 1 to 2
    secret_shares.get_mut(&ONE).unwrap().get_mut(&TWO).unwrap().invalidate_pop();

    let mut blame = None;
    let machines = machines
      .drain()
      .filter_map(|(i, machine)| {
        let our_secret_shares = generate_secret_shares(&secret_shares, i);
        let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
        if i == TWO {
          assert_eq!(machine.err(), Some(DkgError::InvalidShare { participant: ONE, blame: None }));
          // Explicitly declare we have a blame object, which happens to be None since invalid PoP
          // is self-explainable
          blame = Some(None);
          None
        } else {
          Some(machine.unwrap())
        }
      })
      .collect::<Vec<_>>();

    test_blame(&commitment_msgs, machines, &secret_shares[&ONE][&TWO].clone(), &blame.unwrap());
  }

  #[test]
  fn invalid_ecdh_blame() {
    let (mut machines, commitment_msgs, _, mut secret_shares) =
      commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);

    // Mutate the share to trigger a blame event
    // Mutates from 2 to 1, as 1 is expected to end up malicious for test_blame to pass
    // While here, 2 is malicious, this is so 1 creates the blame proof
    // We then malleate 1's blame proof, so 1 ends up malicious
    // Doesn't simply invalidate the PoP as that won't have a blame statement
    // By mutating the encrypted data, we do ensure a blame statement is created
    secret_shares
      .get_mut(&TWO)
      .unwrap()
      .get_mut(&ONE)
      .unwrap()
      .invalidate_msg(&mut OsRng, CONTEXT, TWO);

    let mut blame = None;
    let machines = machines
      .drain()
      .filter_map(|(i, machine)| {
        let our_secret_shares = generate_secret_shares(&secret_shares, i);
        let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
        if i == ONE {
          blame = Some(match machine.err() {
            Some(DkgError::InvalidShare { participant: TWO, blame: Some(blame) }) => Some(blame),
            _ => panic!(),
          });
          None
        } else {
          Some(machine.unwrap())
        }
      })
      .collect::<Vec<_>>();

    blame.as_mut().unwrap().as_mut().unwrap().invalidate_key();
    test_blame(&commitment_msgs, machines, &secret_shares[&TWO][&ONE].clone(), &blame.unwrap());
  }

  // This should be largely equivalent to the prior test
  #[test]
  fn invalid_dleq_blame() {
    let (mut machines, commitment_msgs, _, mut secret_shares) =
      commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);

    secret_shares
      .get_mut(&TWO)
      .unwrap()
      .get_mut(&ONE)
      .unwrap()
      .invalidate_msg(&mut OsRng, CONTEXT, TWO);

    let mut blame = None;
    let machines = machines
      .drain()
      .filter_map(|(i, machine)| {
        let our_secret_shares = generate_secret_shares(&secret_shares, i);
        let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
        if i == ONE {
          blame = Some(match machine.err() {
            Some(DkgError::InvalidShare { participant: TWO, blame: Some(blame) }) => Some(blame),
            _ => panic!(),
          });
          None
        } else {
          Some(machine.unwrap())
        }
      })
      .collect::<Vec<_>>();

    blame.as_mut().unwrap().as_mut().unwrap().invalidate_dleq();
    test_blame(&commitment_msgs, machines, &secret_shares[&TWO][&ONE].clone(), &blame.unwrap());
  }

  #[test]
  fn invalid_share_serialization_blame() {
    let (mut machines, commitment_msgs, enc_keys, mut secret_shares) =
      commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);

    secret_shares.get_mut(&ONE).unwrap().get_mut(&TWO).unwrap().invalidate_share_serialization(
      &mut OsRng,
      CONTEXT,
      ONE,
      enc_keys[&TWO],
    );

    let mut blame = None;
    let machines = machines
      .drain()
      .filter_map(|(i, machine)| {
        let our_secret_shares = generate_secret_shares(&secret_shares, i);
        let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
        if i == TWO {
          blame = Some(match machine.err() {
            Some(DkgError::InvalidShare { participant: ONE, blame: Some(blame) }) => Some(blame),
            _ => panic!(),
          });
          None
        } else {
          Some(machine.unwrap())
        }
      })
      .collect::<Vec<_>>();

    test_blame(&commitment_msgs, machines, &secret_shares[&ONE][&TWO].clone(), &blame.unwrap());
  }

  #[test]
  fn invalid_share_value_blame() {
    let (mut machines, commitment_msgs, enc_keys, mut secret_shares) =
      commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);

    secret_shares.get_mut(&ONE).unwrap().get_mut(&TWO).unwrap().invalidate_share_value(
      &mut OsRng,
      CONTEXT,
      ONE,
      enc_keys[&TWO],
    );

    let mut blame = None;
    let machines = machines
      .drain()
      .filter_map(|(i, machine)| {
        let our_secret_shares = generate_secret_shares(&secret_shares, i);
        let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
        if i == TWO {
          blame = Some(match machine.err() {
            Some(DkgError::InvalidShare { participant: ONE, blame: Some(blame) }) => Some(blame),
            _ => panic!(),
          });
          None
        } else {
          Some(machine.unwrap())
        }
      })
      .collect::<Vec<_>>();

    test_blame(&commitment_msgs, machines, &secret_shares[&ONE][&TWO].clone(), &blame.unwrap());
  }
}