1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
use rand_core::RngCore;
use group::ff::{PrimeField, PrimeFieldBits};

use crate::field::test_field;

// Ideally, this and test_one would be under Field, yet these tests require access to From<u64>
/// Test zero returns F::from(0).
pub fn test_zero<F: PrimeField>() {
  assert_eq!(F::ZERO, F::from(0u64), "0 != 0");
}

/// Test one returns F::from(1).
pub fn test_one<F: PrimeField>() {
  assert_eq!(F::ONE, F::from(1u64), "1 != 1");
}

/// Test `From<u64>` for F works.
pub fn test_from_u64<F: PrimeField>() {
  assert_eq!(F::ZERO, F::from(0u64), "0 != 0u64");
  assert_eq!(F::ONE, F::from(1u64), "1 != 1u64");
  assert_eq!(F::ONE.double(), F::from(2u64), "2 != 2u64");
  assert_eq!(F::ONE.double() + F::ONE, F::from(3u64), "3 != 3u64");
}

/// Test from_u128 for F works.
pub fn test_from_u128<F: PrimeField>() {
  assert_eq!(F::ZERO, F::from_u128(0u128), "0 != 0u128");
  assert_eq!(F::ONE, F::from_u128(1u128), "1 != 1u128");
  assert_eq!(F::from(2u64), F::from_u128(2u128), "2u64 != 2u128");
  assert_eq!(F::from(3u64), F::from_u128(3u128), "3u64 != 3u128");
}

/// Test is_odd/is_even works.
///
/// This test assumes an odd modulus with oddness being determined by the least-significant bit.
/// Accordingly, this test doesn't support fields alternatively defined.
/// TODO: Improve in the future.
pub fn test_is_odd<F: PrimeField>() {
  assert_eq!(F::ZERO.is_odd().unwrap_u8(), 0, "0 was odd");
  assert_eq!(F::ZERO.is_even().unwrap_u8(), 1, "0 wasn't even");

  assert_eq!(F::ONE.is_odd().unwrap_u8(), 1, "1 was even");
  assert_eq!(F::ONE.is_even().unwrap_u8(), 0, "1 wasn't odd");

  // Make sure an odd value added to an odd value is even
  let two = F::ONE.double();
  assert_eq!(two.is_odd().unwrap_u8(), 0, "2 was odd");
  assert_eq!(two.is_even().unwrap_u8(), 1, "2 wasn't even");

  // Make sure an even value added to an even value is even
  let four = two.double();
  assert_eq!(four.is_odd().unwrap_u8(), 0, "4 was odd");
  assert_eq!(four.is_even().unwrap_u8(), 1, "4 wasn't even");

  let neg_one = -F::ONE;
  assert_eq!(neg_one.is_odd().unwrap_u8(), 0, "-1 was odd");
  assert_eq!(neg_one.is_even().unwrap_u8(), 1, "-1 wasn't even");

  assert_eq!(neg_one.double().is_odd().unwrap_u8(), 1, "(-1).double() was even");
  assert_eq!(neg_one.double().is_even().unwrap_u8(), 0, "(-1).double() wasn't odd");
}

/// Test encoding and decoding of field elements.
pub fn test_encoding<F: PrimeField>() {
  let test = |scalar: F, msg| {
    let bytes = scalar.to_repr();
    let mut repr = F::Repr::default();
    repr.as_mut().copy_from_slice(bytes.as_ref());
    assert_eq!(scalar, F::from_repr(repr).unwrap(), "{msg} couldn't be encoded and decoded");
    assert_eq!(
      scalar,
      F::from_repr_vartime(repr).unwrap(),
      "{msg} couldn't be encoded and decoded",
    );
    assert_eq!(
      bytes.as_ref(),
      F::from_repr(repr).unwrap().to_repr().as_ref(),
      "canonical encoding decoded produced distinct encoding"
    );
  };
  test(F::ZERO, "0");
  test(F::ONE, "1");
  test(F::ONE + F::ONE, "2");
  test(-F::ONE, "-1");

  // Also check if a non-canonical encoding is possible
  let mut high = (F::ZERO - F::ONE).to_repr();
  let mut possible_non_canon = false;
  for byte in high.as_mut() {
    // The fact a bit isn't set in the highest possible value suggests there's unused bits
    // If there's unused bits, mark the possibility of a non-canonical encoding and set the bits
    if *byte != 255 {
      possible_non_canon = true;
      *byte = 255;
      break;
    }
  }

  // Any non-canonical encoding should fail to be read
  if possible_non_canon {
    assert!(!bool::from(F::from_repr(high).is_some()));
  }
}

/// Run all tests on fields implementing PrimeField.
pub fn test_prime_field<R: RngCore, F: PrimeField>(rng: &mut R) {
  test_field::<R, F>(rng);

  test_zero::<F>();
  test_one::<F>();
  test_from_u64::<F>();
  test_from_u128::<F>();
  test_is_odd::<F>();

  // Do a sanity check on the CAPACITY. A full test can't be done at this time
  assert!(F::CAPACITY <= F::NUM_BITS, "capacity exceeded number of bits");

  test_encoding::<F>();
}

/// Test to_le_bits returns the little-endian bits of a value.
// This test assumes that the modulus is at least 4.
pub fn test_to_le_bits<F: PrimeField + PrimeFieldBits>() {
  {
    let bits = F::ZERO.to_le_bits();
    assert_eq!(bits.iter().filter(|bit| **bit).count(), 0, "0 had bits set");
  }

  {
    let bits = F::ONE.to_le_bits();
    assert!(bits[0], "1 didn't have its least significant bit set");
    assert_eq!(bits.iter().filter(|bit| **bit).count(), 1, "1 had multiple bits set");
  }

  {
    let bits = F::from(2).to_le_bits();
    assert!(bits[1], "2 didn't have its second bit set");
    assert_eq!(bits.iter().filter(|bit| **bit).count(), 1, "2 had multiple bits set");
  }

  {
    let bits = F::from(3).to_le_bits();
    assert!(bits[0], "3 didn't have its first bit set");
    assert!(bits[1], "3 didn't have its second bit set");
    assert_eq!(bits.iter().filter(|bit| **bit).count(), 2, "2 didn't have two bits set");
  }
}

/// Test char_le_bits returns the bits of the modulus.
pub fn test_char_le_bits<F: PrimeField + PrimeFieldBits>() {
  // A field with a modulus of 0 may be technically valid? Yet these tests assume some basic
  // functioning.
  assert!(F::char_le_bits().iter().any(|bit| *bit), "char_le_bits contained 0");

  // Test this is the bit pattern of the modulus by reconstructing the modulus from it
  let mut bit = F::ONE;
  let mut modulus = F::ZERO;
  for set in F::char_le_bits() {
    if set {
      modulus += bit;
    }
    bit = bit.double();
  }
  assert_eq!(modulus, F::ZERO, "char_le_bits did not contain the field's modulus");
}

/// Test NUM_BITS is accurate.
pub fn test_num_bits<F: PrimeField + PrimeFieldBits>() {
  let mut val = F::ONE;
  let mut bit = 0;
  while ((bit + 1) < val.to_le_bits().len()) && val.double().to_le_bits()[bit + 1] {
    val = val.double();
    bit += 1;
  }
  assert_eq!(
    F::NUM_BITS,
    u32::try_from(bit + 1).unwrap(),
    "NUM_BITS was incorrect. it should be {}",
    bit + 1
  );
}

/// Test CAPACITY is accurate.
pub fn test_capacity<F: PrimeField + PrimeFieldBits>() {
  assert!(F::CAPACITY <= F::NUM_BITS, "capacity exceeded number of bits");

  let mut val = F::ONE;
  assert!(val.to_le_bits()[0], "1 didn't have its least significant bit set");
  for b in 1 .. F::CAPACITY {
    val = val.double();
    val += F::ONE;
    for i in 0 ..= b {
      assert!(
        val.to_le_bits()[usize::try_from(i).unwrap()],
        "couldn't set a bit within the capacity",
      );
    }
  }

  // If the field has a modulus which is a power of 2, NUM_BITS should equal CAPACITY
  // Adding one would also be sufficient to trigger an overflow
  if F::char_le_bits().iter().filter(|bit| **bit).count() == 1 {
    assert_eq!(
      F::NUM_BITS,
      F::CAPACITY,
      "field has a power of two modulus yet CAPACITY doesn't equal NUM_BITS",
    );
    assert_eq!(val + F::ONE, F::ZERO, "CAPACITY set bits, + 1, != zero for a binary field");
    return;
  }

  assert_eq!(F::NUM_BITS - 1, F::CAPACITY, "capacity wasn't NUM_BITS - 1");
}

fn pow<F: PrimeFieldBits>(base: F, exp: F) -> F {
  let mut res = F::ONE;
  for bit in exp.to_le_bits().iter().rev() {
    res *= res;
    if *bit {
      res *= base;
    }
  }
  res
}

// Ideally, this would be under field.rs, yet the above pow function requires PrimeFieldBits
/// Perform basic tests on the pow functions, even when passed non-canonical inputs.
pub fn test_pow<F: PrimeFieldBits>() {
  // Sanity check the local pow algorithm. Does not have assert messages as these shouldn't fail
  assert_eq!(pow(F::ONE, F::ZERO), F::ONE);
  assert_eq!(pow(F::ONE.double(), F::ZERO), F::ONE);
  assert_eq!(pow(F::ONE, F::ONE), F::ONE);

  let two = F::ONE.double();
  assert_eq!(pow(two, F::ONE), two);
  assert_eq!(pow(two, two), two.double());
  let three = two + F::ONE;
  assert_eq!(pow(three, F::ONE), three);
  assert_eq!(pow(three, two), three * three);
  assert_eq!(pow(three, three), three * three * three);

  // Choose a small base without a notably uniform bit pattern
  let bit_0 = F::ONE;
  let base = {
    let bit_1 = bit_0.double();
    let bit_2 = bit_1.double();
    let bit_3 = bit_2.double();
    let bit_4 = bit_3.double();
    let bit_5 = bit_4.double();
    let bit_6 = bit_5.double();
    let bit_7 = bit_6.double();
    bit_7 + bit_6 + bit_5 + bit_2 + bit_0
  };

  // Ensure pow/pow_vartime return 1 when the base is raised to 0, handling malleated inputs
  assert_eq!(base.pow([]), F::ONE, "pow x^0 ([]) != 1");
  assert_eq!(base.pow_vartime([]), F::ONE, "pow x^0 ([]) != 1");
  assert_eq!(base.pow([0]), F::ONE, "pow_vartime x^0 ([0]) != 1");
  assert_eq!(base.pow_vartime([0]), F::ONE, "pow_vartime x^0 ([0]) != 1");
  assert_eq!(base.pow([0, 0]), F::ONE, "pow x^0 ([0, 0]) != 1");
  assert_eq!(base.pow_vartime([0, 0]), F::ONE, "pow_vartime x^0 ([0, 0]) != 1");

  // Ensure pow/pow_vartime return the base when raised to 1, handling malleated inputs
  assert_eq!(base.pow([1]), base, "pow x^1 ([1]) != x");
  assert_eq!(base.pow_vartime([1, 0]), base, "pow_vartime x^1 ([1, 0]) != x");
  assert_eq!(base.pow([1]), base, "pow x^1 ([1]) != x");
  assert_eq!(base.pow_vartime([1, 0]), base, "pow_vartime x^1 ([1, 0]) != x");

  // Ensure pow/pow_vartime can handle multiple u64s properly
  // Create a scalar which exceeds u64
  let mut bit_64 = bit_0;
  for _ in 0 .. 64 {
    bit_64 = bit_64.double();
  }
  // Run the tests
  assert_eq!(base.pow([0, 1]), pow(base, bit_64), "pow x^(2^64) != x^(2^64)");
  assert_eq!(base.pow_vartime([0, 1]), pow(base, bit_64), "pow_vartime x^(2^64) != x^(2^64)");
  assert_eq!(base.pow([1, 1]), pow(base, bit_64 + F::ONE), "pow x^(2^64 + 1) != x^(2^64 + 1)");
  assert_eq!(
    base.pow_vartime([1, 1]),
    pow(base, bit_64 + F::ONE),
    "pow_vartime x^(2^64 + 1) != x^(2^64 + 1)"
  );
}

/// Test the inverted constants are correct.
pub fn test_inv_consts<F: PrimeFieldBits>() {
  assert_eq!(F::TWO_INV, F::from(2u64).invert().unwrap(), "F::TWO_INV != 2.invert()");
  assert_eq!(
    F::ROOT_OF_UNITY_INV,
    F::ROOT_OF_UNITY.invert().unwrap(),
    "F::ROOT_OF_UNITY_INV != F::ROOT_OF_UNITY.invert()"
  );
}

/// Test S is correct.
pub fn test_s<F: PrimeFieldBits>() {
  // "This is the number of leading zero bits in the little-endian bit representation of
  // `modulus - 1`."
  let mut s = 0;
  for b in (F::ZERO - F::ONE).to_le_bits() {
    if b {
      break;
    }
    s += 1;
  }
  assert_eq!(s, F::S, "incorrect S");
}

/// Test the root of unity is correct for the provided multiplicative generator.
pub fn test_root_of_unity<F: PrimeFieldBits>() {
  // "It can be calculated by exponentiating `Self::multiplicative_generator` by `t`, where
  // `t = (modulus - 1) >> Self::S`."

  // Get the bytes to shift
  let mut bits = (F::ZERO - F::ONE).to_le_bits().iter().map(|bit| *bit).collect::<Vec<_>>();
  for _ in 0 .. F::S {
    bits.remove(0);
  }

  // Construct t
  let mut bit = F::ONE;
  let mut t = F::ZERO;
  for set in bits {
    if set {
      t += bit;
    }
    bit = bit.double();
  }
  assert!(bool::from(t.is_odd()), "t wasn't odd");

  assert_eq!(pow(F::MULTIPLICATIVE_GENERATOR, t), F::ROOT_OF_UNITY, "incorrect root of unity");
  assert_eq!(
    pow(F::ROOT_OF_UNITY, pow(F::from(2u64), F::from(F::S.into()))),
    F::ONE,
    "root of unity raised to 2^S wasn't 1",
  );
}

/// Test DELTA is correct.
pub fn test_delta<F: PrimeFieldBits>() {
  assert_eq!(
    pow(F::MULTIPLICATIVE_GENERATOR, pow(F::from(2u64), F::from(u64::from(F::S)))),
    F::DELTA,
    "F::DELTA is incorrect"
  );
}

/// Run all tests on fields implementing PrimeFieldBits.
pub fn test_prime_field_bits<R: RngCore, F: PrimeFieldBits>(rng: &mut R) {
  test_prime_field::<R, F>(rng);

  test_to_le_bits::<F>();
  test_char_le_bits::<F>();

  test_pow::<F>();

  test_inv_consts::<F>();
  test_s::<F>();
  test_root_of_unity::<F>();
  test_delta::<F>();

  test_num_bits::<F>();
  test_capacity::<F>();
}