1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
#![allow(dead_code)] // ArrayBuilder is soft-deprecated internally
use crate::*;
pub trait Sealed {}
impl<T> Sealed for [T; 0] {}
/// **UNSAFE**: Creates an array one element at a time using a mutable iterator of pointers.
///
/// You MUST increment the position while iterating to mark off created elements,
/// which will be dropped if `into_inner` is not called.
///
/// This is soft-deprecated in favor of [`IntrusiveArrayBuilder`] due to Rust's
/// lack of return-value optimization causing issues moving the array out of the struct.
/// Still works fine for smaller arrays, though.
pub struct ArrayBuilder<T, N: ArrayLength> {
array: GenericArray<MaybeUninit<T>, N>,
position: usize,
}
impl<T, N: ArrayLength> ArrayBuilder<T, N> {
/// Begin building an array
#[inline(always)]
pub const fn new() -> ArrayBuilder<T, N> {
ArrayBuilder {
array: GenericArray::uninit(),
position: 0,
}
}
/// Consume an iterator, `.zip`-ing it to fill some or all of the array. This does not check if the
/// iterator had extra elements or too few elements.
///
/// This makes no attempt to continue where a previous `extend` leaves off. Therefore, it should
/// only be used once per `ArrayBuilder`.
#[inline(always)]
pub unsafe fn extend(&mut self, source: impl Iterator<Item = T>) {
let (destination, position) = (self.array.iter_mut(), &mut self.position);
destination.zip(source).for_each(|(dst, src)| {
dst.write(src);
*position += 1;
});
}
/// Returns true if the write position equals the array size
#[inline(always)]
pub const fn is_full(&self) -> bool {
self.position == N::USIZE
}
/// Creates a mutable iterator for writing to the array elements.
///
/// You MUST increment the position value (given as a mutable reference) as you iterate
/// to mark how many elements have been created.
///
/// ```
/// #[cfg(feature = "internals")]
/// # {
/// # use generic_array::{GenericArray, internals::ArrayBuilder, typenum::U5};
/// # struct SomeType;
/// fn make_some_struct() -> SomeType { SomeType }
/// unsafe {
/// let mut builder = ArrayBuilder::<SomeType, U5>::new();
/// let (dst_iter, position) = builder.iter_position();
/// for dst in dst_iter {
/// dst.write(make_some_struct());
/// // MUST be done AFTER ownership of the value has been given to `dst.write`
/// *position += 1;
/// }
/// let your_array = builder.assume_init();
/// }
/// # }
/// ```
#[inline(always)]
pub unsafe fn iter_position(&mut self) -> (slice::IterMut<MaybeUninit<T>>, &mut usize) {
(self.array.iter_mut(), &mut self.position)
}
/// When done writing (assuming all elements have been written to),
/// get the inner array.
#[inline(always)]
pub unsafe fn assume_init(self) -> GenericArray<T, N> {
debug_assert!(self.is_full());
let array = ptr::read(&self.array);
mem::forget(self);
GenericArray::assume_init(array)
}
}
impl<T, N: ArrayLength> Drop for ArrayBuilder<T, N> {
fn drop(&mut self) {
unsafe {
ptr::drop_in_place(
// Same cast as MaybeUninit::slice_assume_init_mut
self.array.get_unchecked_mut(..self.position) as *mut [MaybeUninit<T>]
as *mut [T],
);
}
}
}
/// Similar to [`ArrayBuilder`] but uses a reference to a pre-allocated array, be
/// it on the stack or heap.
pub struct IntrusiveArrayBuilder<'a, T, N: ArrayLength> {
array: &'a mut GenericArray<MaybeUninit<T>, N>,
position: usize,
}
impl<'a, T, N: ArrayLength> IntrusiveArrayBuilder<'a, T, N> {
/// Begin building an array
#[inline(always)]
pub fn new(array: &'a mut GenericArray<MaybeUninit<T>, N>) -> IntrusiveArrayBuilder<T, N> {
IntrusiveArrayBuilder { array, position: 0 }
}
/// Consume an iterator, `.zip`-ing it to fill some or all of the array. This does not check if the
/// iterator had extra elements or too few elements.
///
/// This makes no attempt to continue where a previous `extend` leaves off. Therefore, it should
/// only be used once per `ArrayBuilder`.
#[inline(always)]
pub unsafe fn extend(&mut self, source: impl Iterator<Item = T>) {
let (destination, position) = (self.array.iter_mut(), &mut self.position);
destination.zip(source).for_each(|(dst, src)| {
dst.write(src);
*position += 1;
});
}
/// Returns true if the write position equals the array size
#[inline(always)]
pub fn is_full(&self) -> bool {
self.position == N::USIZE
}
/// Creates a mutable iterator for writing to the array elements.
///
/// You MUST increment the position value (given as a mutable reference) as you iterate
/// to mark how many elements have been created.
///
/// ```
/// #[cfg(feature = "internals")]
/// # {
/// # use generic_array::{GenericArray, internals::IntrusiveArrayBuilder, typenum::U5};
/// # struct SomeType;
/// fn make_some_struct() -> SomeType { SomeType }
/// unsafe {
/// let mut array = GenericArray::uninit();
/// let mut builder = IntrusiveArrayBuilder::<SomeType, U5>::new(&mut array);
/// let (dst_iter, position) = builder.iter_position();
/// for dst in dst_iter {
/// dst.write(make_some_struct());
/// // MUST be done AFTER ownership of the value has been given to `dst.write`
/// *position += 1;
/// }
/// let your_array = { builder.finish(); IntrusiveArrayBuilder::array_assume_init(array) };
/// }
/// # }
/// ```
#[inline(always)]
pub unsafe fn iter_position(&mut self) -> (slice::IterMut<MaybeUninit<T>>, &mut usize) {
(self.array.iter_mut(), &mut self.position)
}
/// When done writing (assuming all elements have been written to),
/// get the inner array.
#[inline(always)]
pub unsafe fn finish(self) {
debug_assert!(self.is_full());
mem::forget(self)
}
/// Similar to [`GenericArray::assume_init`] but not `const` and optimizes better.
#[inline(always)]
pub unsafe fn array_assume_init(array: GenericArray<MaybeUninit<T>, N>) -> GenericArray<T, N> {
ptr::read(&array as *const _ as *const MaybeUninit<GenericArray<T, N>>).assume_init()
}
}
impl<'a, T, N: ArrayLength> Drop for IntrusiveArrayBuilder<'a, T, N> {
fn drop(&mut self) {
unsafe {
ptr::drop_in_place(
// Same cast as MaybeUninit::slice_assume_init_mut
self.array.get_unchecked_mut(..self.position) as *mut [MaybeUninit<T>]
as *mut [T],
);
}
}
}
/// **UNSAFE**: Consumes an array one element at a time.
///
/// You MUST increment the position while iterating and any leftover elements
/// will be dropped if position does not go to N
pub struct ArrayConsumer<T, N: ArrayLength> {
array: ManuallyDrop<GenericArray<T, N>>,
position: usize,
}
impl<T, N: ArrayLength> ArrayConsumer<T, N> {
/// Give ownership of the array to the consumer
#[inline(always)]
pub const fn new(array: GenericArray<T, N>) -> ArrayConsumer<T, N> {
ArrayConsumer {
array: ManuallyDrop::new(array),
position: 0,
}
}
/// Creates an iterator and mutable reference to the internal position
/// to keep track of consumed elements.
///
/// You MUST increment the position as you iterate to mark off consumed elements.
#[inline(always)]
pub unsafe fn iter_position(&mut self) -> (slice::Iter<T>, &mut usize) {
(self.array.iter(), &mut self.position)
}
}
impl<T, N: ArrayLength> Drop for ArrayConsumer<T, N> {
fn drop(&mut self) {
unsafe {
ptr::drop_in_place(self.array.get_unchecked_mut(self.position..));
}
}
}