1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
use core::ops::Deref;

use std::collections::HashMap;
#[cfg(test)]
use std::str::FromStr;

use zeroize::Zeroizing;

use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha20Rng;

use ciphersuite::group::{ff::PrimeField, GroupEncoding};

use crate::{
  curve::Curve,
  Participant, ThresholdCore, ThresholdKeys,
  algorithm::{Hram, IetfSchnorr},
  sign::{
    Writable, Nonce, GeneratorCommitments, NonceCommitments, Commitments, Preprocess,
    PreprocessMachine, SignMachine, SignatureMachine, AlgorithmMachine,
  },
  tests::{clone_without, recover_key, test_ciphersuite},
};

/// Vectors for a ciphersuite.
pub struct Vectors {
  pub threshold: u16,

  pub group_secret: String,
  pub group_key: String,
  pub shares: Vec<String>,

  pub msg: String,
  pub included: Vec<Participant>,

  pub nonce_randomness: Vec<[String; 2]>,
  pub nonces: Vec<[String; 2]>,
  pub commitments: Vec<[String; 2]>,

  pub sig_shares: Vec<String>,

  pub sig: String,
}

// Vectors are expected to be formatted per the IETF proof of concept
// The included vectors are directly from
// https://github.com/cfrg/draft-irtf-cfrg-frost/tree/draft-irtf-cfrg-frost-14/poc
#[cfg(test)]
impl From<serde_json::Value> for Vectors {
  fn from(value: serde_json::Value) -> Vectors {
    let to_str = |value: &serde_json::Value| value.as_str().unwrap().to_string();
    Vectors {
      threshold: u16::from_str(value["config"]["NUM_PARTICIPANTS"].as_str().unwrap()).unwrap(),

      group_secret: to_str(&value["inputs"]["group_secret_key"]),
      group_key: to_str(&value["inputs"]["group_public_key"]),
      shares: value["inputs"]["participant_shares"]
        .as_array()
        .unwrap()
        .iter()
        .map(|share| to_str(&share["participant_share"]))
        .collect(),

      msg: to_str(&value["inputs"]["message"]),
      included: value["inputs"]["participant_list"]
        .as_array()
        .unwrap()
        .iter()
        .map(|i| Participant::new(u16::try_from(i.as_u64().unwrap()).unwrap()).unwrap())
        .collect(),

      nonce_randomness: value["round_one_outputs"]["outputs"]
        .as_array()
        .unwrap()
        .iter()
        .map(|value| {
          [to_str(&value["hiding_nonce_randomness"]), to_str(&value["binding_nonce_randomness"])]
        })
        .collect(),
      nonces: value["round_one_outputs"]["outputs"]
        .as_array()
        .unwrap()
        .iter()
        .map(|value| [to_str(&value["hiding_nonce"]), to_str(&value["binding_nonce"])])
        .collect(),
      commitments: value["round_one_outputs"]["outputs"]
        .as_array()
        .unwrap()
        .iter()
        .map(|value| {
          [to_str(&value["hiding_nonce_commitment"]), to_str(&value["binding_nonce_commitment"])]
        })
        .collect(),

      sig_shares: value["round_two_outputs"]["outputs"]
        .as_array()
        .unwrap()
        .iter()
        .map(|value| to_str(&value["sig_share"]))
        .collect(),

      sig: to_str(&value["final_output"]["sig"]),
    }
  }
}

// Load these vectors into ThresholdKeys using a custom serialization it'll deserialize
fn vectors_to_multisig_keys<C: Curve>(vectors: &Vectors) -> HashMap<Participant, ThresholdKeys<C>> {
  let shares = vectors
    .shares
    .iter()
    .map(|secret| C::read_F::<&[u8]>(&mut hex::decode(secret).unwrap().as_ref()).unwrap())
    .collect::<Vec<_>>();
  let verification_shares = shares.iter().map(|secret| C::generator() * secret).collect::<Vec<_>>();

  let mut keys = HashMap::new();
  for i in 1 ..= u16::try_from(shares.len()).unwrap() {
    // Manually re-implement the serialization for ThresholdCore to import this data
    let mut serialized = vec![];
    serialized.extend(u32::try_from(C::ID.len()).unwrap().to_le_bytes());
    serialized.extend(C::ID);
    serialized.extend(vectors.threshold.to_le_bytes());
    serialized.extend(u16::try_from(shares.len()).unwrap().to_le_bytes());
    serialized.extend(i.to_le_bytes());
    serialized.extend(shares[usize::from(i) - 1].to_repr().as_ref());
    for share in &verification_shares {
      serialized.extend(share.to_bytes().as_ref());
    }

    let these_keys = ThresholdCore::<C>::read::<&[u8]>(&mut serialized.as_ref()).unwrap();
    assert_eq!(these_keys.params().t(), vectors.threshold);
    assert_eq!(usize::from(these_keys.params().n()), shares.len());
    let participant = Participant::new(i).unwrap();
    assert_eq!(these_keys.params().i(), participant);
    assert_eq!(these_keys.secret_share().deref(), &shares[usize::from(i - 1)]);
    assert_eq!(hex::encode(these_keys.group_key().to_bytes().as_ref()), vectors.group_key);
    keys.insert(participant, ThresholdKeys::new(these_keys));
  }

  keys
}

/// Test a Ciphersuite with its vectors.
pub fn test_with_vectors<R: RngCore + CryptoRng, C: Curve, H: Hram<C>>(
  rng: &mut R,
  vectors: &Vectors,
) {
  test_ciphersuite::<R, C, H>(rng);

  // Test against the vectors
  let keys = vectors_to_multisig_keys::<C>(vectors);
  {
    let group_key =
      <C as Curve>::read_G::<&[u8]>(&mut hex::decode(&vectors.group_key).unwrap().as_ref())
        .unwrap();
    let secret =
      C::read_F::<&[u8]>(&mut hex::decode(&vectors.group_secret).unwrap().as_ref()).unwrap();
    assert_eq!(C::generator() * secret, group_key);
    assert_eq!(recover_key(&keys), secret);

    let mut machines = vec![];
    for i in &vectors.included {
      machines.push((i, AlgorithmMachine::new(IetfSchnorr::<C, H>::ietf(), keys[i].clone())));
    }

    let mut commitments = HashMap::new();
    let machines = machines
      .into_iter()
      .enumerate()
      .map(|(c, (i, machine))| {
        let nonce = |i| {
          Zeroizing::new(
            C::read_F::<&[u8]>(&mut hex::decode(&vectors.nonces[c][i]).unwrap().as_ref()).unwrap(),
          )
        };
        let nonces = [nonce(0), nonce(1)];
        let these_commitments =
          [C::generator() * nonces[0].deref(), C::generator() * nonces[1].deref()];

        assert_eq!(
          these_commitments[0].to_bytes().as_ref(),
          hex::decode(&vectors.commitments[c][0]).unwrap()
        );
        assert_eq!(
          these_commitments[1].to_bytes().as_ref(),
          hex::decode(&vectors.commitments[c][1]).unwrap()
        );

        let preprocess = Preprocess {
          commitments: Commitments {
            nonces: vec![NonceCommitments {
              generators: vec![GeneratorCommitments(these_commitments)],
            }],
          },
          addendum: (),
        };
        // FROST doesn't specify how to serialize these together, yet this is sane
        // (and the simplest option)
        assert_eq!(
          preprocess.serialize(),
          hex::decode(vectors.commitments[c][0].clone() + &vectors.commitments[c][1]).unwrap()
        );

        let machine = machine.unsafe_override_preprocess(vec![Nonce(nonces)], preprocess);

        commitments.insert(
          *i,
          machine
            .read_preprocess::<&[u8]>(
              &mut [
                these_commitments[0].to_bytes().as_ref(),
                these_commitments[1].to_bytes().as_ref(),
              ]
              .concat()
              .as_ref(),
            )
            .unwrap(),
        );
        (i, machine)
      })
      .collect::<Vec<_>>();

    let mut shares = HashMap::new();
    let machines = machines
      .into_iter()
      .enumerate()
      .map(|(c, (i, machine))| {
        let (machine, share) = machine
          .sign(clone_without(&commitments, i), &hex::decode(&vectors.msg).unwrap())
          .unwrap();

        let share = {
          let mut buf = vec![];
          share.write(&mut buf).unwrap();
          buf
        };
        assert_eq!(share, hex::decode(&vectors.sig_shares[c]).unwrap());

        shares.insert(*i, machine.read_share::<&[u8]>(&mut share.as_ref()).unwrap());
        (i, machine)
      })
      .collect::<Vec<_>>();

    for (i, machine) in machines {
      let sig = machine.complete(clone_without(&shares, i)).unwrap();
      let mut serialized = sig.R.to_bytes().as_ref().to_vec();
      serialized.extend(sig.s.to_repr().as_ref());
      assert_eq!(hex::encode(serialized), vectors.sig);
    }
  }

  // The above code didn't test the nonce generation due to the infeasibility of doing so against
  // the current codebase

  // A transparent RNG which has a fixed output
  struct TransparentRng(Vec<[u8; 32]>);
  impl RngCore for TransparentRng {
    fn next_u32(&mut self) -> u32 {
      unimplemented!()
    }
    fn next_u64(&mut self) -> u64 {
      unimplemented!()
    }
    fn fill_bytes(&mut self, dest: &mut [u8]) {
      dest.copy_from_slice(&self.0.remove(0))
    }
    fn try_fill_bytes(&mut self, _: &mut [u8]) -> Result<(), rand_core::Error> {
      unimplemented!()
    }
  }
  // CryptoRng requires the output not reveal any info about any other outputs
  // Since this only will produce one output, this is actually met, even though it'd be fine to
  // fake it as this is a test
  impl CryptoRng for TransparentRng {}

  // Test C::random_nonce matches the expected vectors
  for (i, l) in vectors.included.iter().enumerate() {
    let l = usize::from(u16::from(*l));

    // Shares are a zero-indexed array of all participants, hence l - 1
    let share = Zeroizing::new(
      C::read_F::<&[u8]>(&mut hex::decode(&vectors.shares[l - 1]).unwrap().as_ref()).unwrap(),
    );

    let randomness = vectors.nonce_randomness[i]
      .iter()
      .map(|randomness| hex::decode(randomness).unwrap().try_into().unwrap())
      .collect::<Vec<_>>();

    let nonces = vectors.nonces[i]
      .iter()
      .map(|nonce| {
        Zeroizing::new(C::read_F::<&[u8]>(&mut hex::decode(nonce).unwrap().as_ref()).unwrap())
      })
      .collect::<Vec<_>>();

    for (randomness, nonce) in randomness.iter().zip(&nonces) {
      // Nonces are only present for participating signers, hence i
      assert_eq!(C::random_nonce(&share, &mut TransparentRng(vec![*randomness])), *nonce);
    }

    // Also test it at the Commitments level
    let (generated_nonces, commitments) =
      Commitments::<C>::new::<_>(&mut TransparentRng(randomness), &share, &[vec![C::generator()]]);

    assert_eq!(generated_nonces.len(), 1);
    assert_eq!(generated_nonces[0].0, [nonces[0].clone(), nonces[1].clone()]);

    let mut commitments_bytes = vec![];
    commitments.write(&mut commitments_bytes).unwrap();
    assert_eq!(
      commitments_bytes,
      hex::decode(vectors.commitments[i][0].clone() + &vectors.commitments[i][1]).unwrap()
    );
  }

  // This doesn't verify C::random_nonce is called correctly, where the code should call it with
  // the output from a ChaCha20 stream
  // Create a known ChaCha20 stream to verify it ends up at random_nonce properly

  {
    let mut chacha_seed = [0; 32];
    rng.fill_bytes(&mut chacha_seed);
    let mut ours = ChaCha20Rng::from_seed(chacha_seed);
    let frosts = ours.clone();

    // The machines should geenerate a seed, and then use that seed in a ChaCha20 RNG for nonces
    let mut preprocess_seed = [0; 32];
    ours.fill_bytes(&mut preprocess_seed);
    let mut ours = ChaCha20Rng::from_seed(preprocess_seed);

    // Get the randomness which will be used
    let mut randomness = ([0; 32], [0; 32]);
    ours.fill_bytes(&mut randomness.0);
    ours.fill_bytes(&mut randomness.1);

    // Create the machines
    let mut machines = vec![];
    for i in &vectors.included {
      machines.push((i, AlgorithmMachine::new(IetfSchnorr::<C, H>::ietf(), keys[i].clone())));
    }

    for (i, machine) in machines {
      let (_, preprocess) = machine.preprocess(&mut frosts.clone());

      // Calculate the expected nonces
      let mut expected = (C::generator() *
        C::random_nonce(keys[i].secret_share(), &mut TransparentRng(vec![randomness.0])).deref())
      .to_bytes()
      .as_ref()
      .to_vec();
      expected.extend(
        (C::generator() *
          C::random_nonce(keys[i].secret_share(), &mut TransparentRng(vec![randomness.1]))
            .deref())
        .to_bytes()
        .as_ref(),
      );

      // Ensure they match
      assert_eq!(preprocess.serialize(), expected);
    }
  }
}