use core::ops::Deref;
use std::collections::HashMap;
#[cfg(test)]
use std::str::FromStr;
use zeroize::Zeroizing;
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha20Rng;
use ciphersuite::group::{ff::PrimeField, GroupEncoding};
use crate::{
curve::Curve,
Participant, ThresholdCore, ThresholdKeys,
algorithm::{Hram, IetfSchnorr},
sign::{
Writable, Nonce, GeneratorCommitments, NonceCommitments, Commitments, Preprocess,
PreprocessMachine, SignMachine, SignatureMachine, AlgorithmMachine,
},
tests::{clone_without, recover_key, test_ciphersuite},
};
pub struct Vectors {
pub threshold: u16,
pub group_secret: String,
pub group_key: String,
pub shares: Vec<String>,
pub msg: String,
pub included: Vec<Participant>,
pub nonce_randomness: Vec<[String; 2]>,
pub nonces: Vec<[String; 2]>,
pub commitments: Vec<[String; 2]>,
pub sig_shares: Vec<String>,
pub sig: String,
}
#[cfg(test)]
impl From<serde_json::Value> for Vectors {
fn from(value: serde_json::Value) -> Vectors {
let to_str = |value: &serde_json::Value| value.as_str().unwrap().to_string();
Vectors {
threshold: u16::from_str(value["config"]["NUM_PARTICIPANTS"].as_str().unwrap()).unwrap(),
group_secret: to_str(&value["inputs"]["group_secret_key"]),
group_key: to_str(&value["inputs"]["group_public_key"]),
shares: value["inputs"]["participant_shares"]
.as_array()
.unwrap()
.iter()
.map(|share| to_str(&share["participant_share"]))
.collect(),
msg: to_str(&value["inputs"]["message"]),
included: value["inputs"]["participant_list"]
.as_array()
.unwrap()
.iter()
.map(|i| Participant::new(u16::try_from(i.as_u64().unwrap()).unwrap()).unwrap())
.collect(),
nonce_randomness: value["round_one_outputs"]["outputs"]
.as_array()
.unwrap()
.iter()
.map(|value| {
[to_str(&value["hiding_nonce_randomness"]), to_str(&value["binding_nonce_randomness"])]
})
.collect(),
nonces: value["round_one_outputs"]["outputs"]
.as_array()
.unwrap()
.iter()
.map(|value| [to_str(&value["hiding_nonce"]), to_str(&value["binding_nonce"])])
.collect(),
commitments: value["round_one_outputs"]["outputs"]
.as_array()
.unwrap()
.iter()
.map(|value| {
[to_str(&value["hiding_nonce_commitment"]), to_str(&value["binding_nonce_commitment"])]
})
.collect(),
sig_shares: value["round_two_outputs"]["outputs"]
.as_array()
.unwrap()
.iter()
.map(|value| to_str(&value["sig_share"]))
.collect(),
sig: to_str(&value["final_output"]["sig"]),
}
}
}
fn vectors_to_multisig_keys<C: Curve>(vectors: &Vectors) -> HashMap<Participant, ThresholdKeys<C>> {
let shares = vectors
.shares
.iter()
.map(|secret| C::read_F::<&[u8]>(&mut hex::decode(secret).unwrap().as_ref()).unwrap())
.collect::<Vec<_>>();
let verification_shares = shares.iter().map(|secret| C::generator() * secret).collect::<Vec<_>>();
let mut keys = HashMap::new();
for i in 1 ..= u16::try_from(shares.len()).unwrap() {
let mut serialized = vec![];
serialized.extend(u32::try_from(C::ID.len()).unwrap().to_le_bytes());
serialized.extend(C::ID);
serialized.extend(vectors.threshold.to_le_bytes());
serialized.extend(u16::try_from(shares.len()).unwrap().to_le_bytes());
serialized.extend(i.to_le_bytes());
serialized.extend(shares[usize::from(i) - 1].to_repr().as_ref());
for share in &verification_shares {
serialized.extend(share.to_bytes().as_ref());
}
let these_keys = ThresholdCore::<C>::read::<&[u8]>(&mut serialized.as_ref()).unwrap();
assert_eq!(these_keys.params().t(), vectors.threshold);
assert_eq!(usize::from(these_keys.params().n()), shares.len());
let participant = Participant::new(i).unwrap();
assert_eq!(these_keys.params().i(), participant);
assert_eq!(these_keys.secret_share().deref(), &shares[usize::from(i - 1)]);
assert_eq!(hex::encode(these_keys.group_key().to_bytes().as_ref()), vectors.group_key);
keys.insert(participant, ThresholdKeys::new(these_keys));
}
keys
}
pub fn test_with_vectors<R: RngCore + CryptoRng, C: Curve, H: Hram<C>>(
rng: &mut R,
vectors: &Vectors,
) {
test_ciphersuite::<R, C, H>(rng);
let keys = vectors_to_multisig_keys::<C>(vectors);
{
let group_key =
<C as Curve>::read_G::<&[u8]>(&mut hex::decode(&vectors.group_key).unwrap().as_ref())
.unwrap();
let secret =
C::read_F::<&[u8]>(&mut hex::decode(&vectors.group_secret).unwrap().as_ref()).unwrap();
assert_eq!(C::generator() * secret, group_key);
assert_eq!(recover_key(&keys), secret);
let mut machines = vec![];
for i in &vectors.included {
machines.push((i, AlgorithmMachine::new(IetfSchnorr::<C, H>::ietf(), keys[i].clone())));
}
let mut commitments = HashMap::new();
let machines = machines
.into_iter()
.enumerate()
.map(|(c, (i, machine))| {
let nonce = |i| {
Zeroizing::new(
C::read_F::<&[u8]>(&mut hex::decode(&vectors.nonces[c][i]).unwrap().as_ref()).unwrap(),
)
};
let nonces = [nonce(0), nonce(1)];
let these_commitments =
[C::generator() * nonces[0].deref(), C::generator() * nonces[1].deref()];
assert_eq!(
these_commitments[0].to_bytes().as_ref(),
hex::decode(&vectors.commitments[c][0]).unwrap()
);
assert_eq!(
these_commitments[1].to_bytes().as_ref(),
hex::decode(&vectors.commitments[c][1]).unwrap()
);
let preprocess = Preprocess {
commitments: Commitments {
nonces: vec![NonceCommitments {
generators: vec![GeneratorCommitments(these_commitments)],
}],
},
addendum: (),
};
assert_eq!(
preprocess.serialize(),
hex::decode(vectors.commitments[c][0].clone() + &vectors.commitments[c][1]).unwrap()
);
let machine = machine.unsafe_override_preprocess(vec![Nonce(nonces)], preprocess);
commitments.insert(
*i,
machine
.read_preprocess::<&[u8]>(
&mut [
these_commitments[0].to_bytes().as_ref(),
these_commitments[1].to_bytes().as_ref(),
]
.concat()
.as_ref(),
)
.unwrap(),
);
(i, machine)
})
.collect::<Vec<_>>();
let mut shares = HashMap::new();
let machines = machines
.into_iter()
.enumerate()
.map(|(c, (i, machine))| {
let (machine, share) = machine
.sign(clone_without(&commitments, i), &hex::decode(&vectors.msg).unwrap())
.unwrap();
let share = {
let mut buf = vec![];
share.write(&mut buf).unwrap();
buf
};
assert_eq!(share, hex::decode(&vectors.sig_shares[c]).unwrap());
shares.insert(*i, machine.read_share::<&[u8]>(&mut share.as_ref()).unwrap());
(i, machine)
})
.collect::<Vec<_>>();
for (i, machine) in machines {
let sig = machine.complete(clone_without(&shares, i)).unwrap();
let mut serialized = sig.R.to_bytes().as_ref().to_vec();
serialized.extend(sig.s.to_repr().as_ref());
assert_eq!(hex::encode(serialized), vectors.sig);
}
}
struct TransparentRng(Vec<[u8; 32]>);
impl RngCore for TransparentRng {
fn next_u32(&mut self) -> u32 {
unimplemented!()
}
fn next_u64(&mut self) -> u64 {
unimplemented!()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
dest.copy_from_slice(&self.0.remove(0))
}
fn try_fill_bytes(&mut self, _: &mut [u8]) -> Result<(), rand_core::Error> {
unimplemented!()
}
}
impl CryptoRng for TransparentRng {}
for (i, l) in vectors.included.iter().enumerate() {
let l = usize::from(u16::from(*l));
let share = Zeroizing::new(
C::read_F::<&[u8]>(&mut hex::decode(&vectors.shares[l - 1]).unwrap().as_ref()).unwrap(),
);
let randomness = vectors.nonce_randomness[i]
.iter()
.map(|randomness| hex::decode(randomness).unwrap().try_into().unwrap())
.collect::<Vec<_>>();
let nonces = vectors.nonces[i]
.iter()
.map(|nonce| {
Zeroizing::new(C::read_F::<&[u8]>(&mut hex::decode(nonce).unwrap().as_ref()).unwrap())
})
.collect::<Vec<_>>();
for (randomness, nonce) in randomness.iter().zip(&nonces) {
assert_eq!(C::random_nonce(&share, &mut TransparentRng(vec![*randomness])), *nonce);
}
let (generated_nonces, commitments) =
Commitments::<C>::new::<_>(&mut TransparentRng(randomness), &share, &[vec![C::generator()]]);
assert_eq!(generated_nonces.len(), 1);
assert_eq!(generated_nonces[0].0, [nonces[0].clone(), nonces[1].clone()]);
let mut commitments_bytes = vec![];
commitments.write(&mut commitments_bytes).unwrap();
assert_eq!(
commitments_bytes,
hex::decode(vectors.commitments[i][0].clone() + &vectors.commitments[i][1]).unwrap()
);
}
{
let mut chacha_seed = [0; 32];
rng.fill_bytes(&mut chacha_seed);
let mut ours = ChaCha20Rng::from_seed(chacha_seed);
let frosts = ours.clone();
let mut preprocess_seed = [0; 32];
ours.fill_bytes(&mut preprocess_seed);
let mut ours = ChaCha20Rng::from_seed(preprocess_seed);
let mut randomness = ([0; 32], [0; 32]);
ours.fill_bytes(&mut randomness.0);
ours.fill_bytes(&mut randomness.1);
let mut machines = vec![];
for i in &vectors.included {
machines.push((i, AlgorithmMachine::new(IetfSchnorr::<C, H>::ietf(), keys[i].clone())));
}
for (i, machine) in machines {
let (_, preprocess) = machine.preprocess(&mut frosts.clone());
let mut expected = (C::generator() *
C::random_nonce(keys[i].secret_share(), &mut TransparentRng(vec![randomness.0])).deref())
.to_bytes()
.as_ref()
.to_vec();
expected.extend(
(C::generator() *
C::random_nonce(keys[i].secret_share(), &mut TransparentRng(vec![randomness.1]))
.deref())
.to_bytes()
.as_ref(),
);
assert_eq!(preprocess.serialize(), expected);
}
}
}