1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
use std_shims::{vec, vec::Vec};

use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop};

use curve25519_dalek::{scalar::Scalar, edwards::EdwardsPoint};

use monero_primitives::{INV_EIGHT, keccak256_to_scalar};
use crate::{
  core::{multiexp, multiexp_vartime, challenge_products},
  batch_verifier::BulletproofsPlusBatchVerifier,
  plus::{ScalarVector, PointVector, GeneratorsList, BpPlusGenerators, padded_pow_of_2},
};

// Figure 1 of the Bulletproofs+ paper
#[derive(Clone, Debug)]
pub(crate) struct WipStatement {
  generators: BpPlusGenerators,
  P: EdwardsPoint,
  y: ScalarVector,
}

impl Zeroize for WipStatement {
  fn zeroize(&mut self) {
    self.P.zeroize();
    self.y.zeroize();
  }
}

#[derive(Clone, Debug, Zeroize, ZeroizeOnDrop)]
pub(crate) struct WipWitness {
  a: ScalarVector,
  b: ScalarVector,
  alpha: Scalar,
}

impl WipWitness {
  pub(crate) fn new(mut a: ScalarVector, mut b: ScalarVector, alpha: Scalar) -> Option<Self> {
    if a.0.is_empty() || (a.len() != b.len()) {
      return None;
    }

    // Pad to the nearest power of 2
    let missing = padded_pow_of_2(a.len()) - a.len();
    a.0.reserve(missing);
    b.0.reserve(missing);
    for _ in 0 .. missing {
      a.0.push(Scalar::ZERO);
      b.0.push(Scalar::ZERO);
    }

    Some(Self { a, b, alpha })
  }
}

#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub(crate) struct WipProof {
  pub(crate) L: Vec<EdwardsPoint>,
  pub(crate) R: Vec<EdwardsPoint>,
  pub(crate) A: EdwardsPoint,
  pub(crate) B: EdwardsPoint,
  pub(crate) r_answer: Scalar,
  pub(crate) s_answer: Scalar,
  pub(crate) delta_answer: Scalar,
}

impl WipStatement {
  pub(crate) fn new(generators: BpPlusGenerators, P: EdwardsPoint, y: Scalar) -> Self {
    debug_assert_eq!(generators.len(), padded_pow_of_2(generators.len()));

    // y ** n
    let mut y_vec = ScalarVector::new(generators.len());
    y_vec[0] = y;
    for i in 1 .. y_vec.len() {
      y_vec[i] = y_vec[i - 1] * y;
    }

    Self { generators, P, y: y_vec }
  }

  fn transcript_L_R(transcript: &mut Scalar, L: EdwardsPoint, R: EdwardsPoint) -> Scalar {
    let e = keccak256_to_scalar(
      [
        transcript.to_bytes().as_ref(),
        L.compress().to_bytes().as_ref(),
        R.compress().to_bytes().as_ref(),
      ]
      .concat(),
    );
    *transcript = e;
    e
  }

  fn transcript_A_B(transcript: &mut Scalar, A: EdwardsPoint, B: EdwardsPoint) -> Scalar {
    let e = keccak256_to_scalar(
      [
        transcript.to_bytes().as_ref(),
        A.compress().to_bytes().as_ref(),
        B.compress().to_bytes().as_ref(),
      ]
      .concat(),
    );
    *transcript = e;
    e
  }

  // Prover's variant of the shared code block to calculate G/H/P when n > 1
  // Returns each permutation of G/H since the prover needs to do operation on each permutation
  // P is dropped as it's unused in the prover's path
  #[allow(clippy::too_many_arguments)]
  fn next_G_H(
    transcript: &mut Scalar,
    mut g_bold1: PointVector,
    mut g_bold2: PointVector,
    mut h_bold1: PointVector,
    mut h_bold2: PointVector,
    L: EdwardsPoint,
    R: EdwardsPoint,
    y_inv_n_hat: Scalar,
  ) -> (Scalar, Scalar, Scalar, Scalar, PointVector, PointVector) {
    debug_assert_eq!(g_bold1.len(), g_bold2.len());
    debug_assert_eq!(h_bold1.len(), h_bold2.len());
    debug_assert_eq!(g_bold1.len(), h_bold1.len());

    let e = Self::transcript_L_R(transcript, L, R);
    let inv_e = e.invert();

    // This vartime is safe as all of these arguments are public
    let mut new_g_bold = Vec::with_capacity(g_bold1.len());
    let e_y_inv = e * y_inv_n_hat;
    for g_bold in g_bold1.0.drain(..).zip(g_bold2.0.drain(..)) {
      new_g_bold.push(multiexp_vartime(&[(inv_e, g_bold.0), (e_y_inv, g_bold.1)]));
    }

    let mut new_h_bold = Vec::with_capacity(h_bold1.len());
    for h_bold in h_bold1.0.drain(..).zip(h_bold2.0.drain(..)) {
      new_h_bold.push(multiexp_vartime(&[(e, h_bold.0), (inv_e, h_bold.1)]));
    }

    let e_square = e * e;
    let inv_e_square = inv_e * inv_e;

    (e, inv_e, e_square, inv_e_square, PointVector(new_g_bold), PointVector(new_h_bold))
  }

  pub(crate) fn prove<R: RngCore + CryptoRng>(
    self,
    rng: &mut R,
    mut transcript: Scalar,
    witness: &WipWitness,
  ) -> Option<WipProof> {
    let WipStatement { generators, P, mut y } = self;
    #[cfg(not(debug_assertions))]
    let _ = P;

    if generators.len() != witness.a.len() {
      return None;
    }
    let (g, h) = (BpPlusGenerators::g(), BpPlusGenerators::h());
    let mut g_bold = vec![];
    let mut h_bold = vec![];
    for i in 0 .. generators.len() {
      g_bold.push(generators.generator(GeneratorsList::GBold, i));
      h_bold.push(generators.generator(GeneratorsList::HBold, i));
    }
    let mut g_bold = PointVector(g_bold);
    let mut h_bold = PointVector(h_bold);

    let mut y_inv = {
      let mut i = 1;
      let mut to_invert = vec![];
      while i < g_bold.len() {
        to_invert.push(y[i - 1]);
        i *= 2;
      }
      Scalar::batch_invert(&mut to_invert);
      to_invert
    };

    // Check P has the expected relationship
    #[cfg(debug_assertions)]
    {
      let mut P_terms = witness
        .a
        .0
        .iter()
        .copied()
        .zip(g_bold.0.iter().copied())
        .chain(witness.b.0.iter().copied().zip(h_bold.0.iter().copied()))
        .collect::<Vec<_>>();
      P_terms.push((witness.a.clone().weighted_inner_product(&witness.b, &y), g));
      P_terms.push((witness.alpha, h));
      debug_assert_eq!(multiexp(&P_terms), P);
      P_terms.zeroize();
    }

    let mut a = witness.a.clone();
    let mut b = witness.b.clone();
    let mut alpha = witness.alpha;

    // From here on, g_bold.len() is used as n
    debug_assert_eq!(g_bold.len(), a.len());

    let mut L_vec = vec![];
    let mut R_vec = vec![];

    // else n > 1 case from figure 1
    while g_bold.len() > 1 {
      let (a1, a2) = a.clone().split();
      let (b1, b2) = b.clone().split();
      let (g_bold1, g_bold2) = g_bold.split();
      let (h_bold1, h_bold2) = h_bold.split();

      let n_hat = g_bold1.len();
      debug_assert_eq!(a1.len(), n_hat);
      debug_assert_eq!(a2.len(), n_hat);
      debug_assert_eq!(b1.len(), n_hat);
      debug_assert_eq!(b2.len(), n_hat);
      debug_assert_eq!(g_bold1.len(), n_hat);
      debug_assert_eq!(g_bold2.len(), n_hat);
      debug_assert_eq!(h_bold1.len(), n_hat);
      debug_assert_eq!(h_bold2.len(), n_hat);

      let y_n_hat = y[n_hat - 1];
      y.0.truncate(n_hat);

      let d_l = Scalar::random(&mut *rng);
      let d_r = Scalar::random(&mut *rng);

      let c_l = a1.clone().weighted_inner_product(&b2, &y);
      let c_r = (a2.clone() * y_n_hat).weighted_inner_product(&b1, &y);

      let y_inv_n_hat = y_inv.pop().unwrap();

      let mut L_terms = (a1.clone() * y_inv_n_hat)
        .0
        .drain(..)
        .zip(g_bold2.0.iter().copied())
        .chain(b2.0.iter().copied().zip(h_bold1.0.iter().copied()))
        .collect::<Vec<_>>();
      L_terms.push((c_l, g));
      L_terms.push((d_l, h));
      let L = multiexp(&L_terms) * INV_EIGHT();
      L_vec.push(L);
      L_terms.zeroize();

      let mut R_terms = (a2.clone() * y_n_hat)
        .0
        .drain(..)
        .zip(g_bold1.0.iter().copied())
        .chain(b1.0.iter().copied().zip(h_bold2.0.iter().copied()))
        .collect::<Vec<_>>();
      R_terms.push((c_r, g));
      R_terms.push((d_r, h));
      let R = multiexp(&R_terms) * INV_EIGHT();
      R_vec.push(R);
      R_terms.zeroize();

      let (e, inv_e, e_square, inv_e_square);
      (e, inv_e, e_square, inv_e_square, g_bold, h_bold) =
        Self::next_G_H(&mut transcript, g_bold1, g_bold2, h_bold1, h_bold2, L, R, y_inv_n_hat);

      a = (a1 * e) + &(a2 * (y_n_hat * inv_e));
      b = (b1 * inv_e) + &(b2 * e);
      alpha += (d_l * e_square) + (d_r * inv_e_square);

      debug_assert_eq!(g_bold.len(), a.len());
      debug_assert_eq!(g_bold.len(), h_bold.len());
      debug_assert_eq!(g_bold.len(), b.len());
    }

    // n == 1 case from figure 1
    debug_assert_eq!(g_bold.len(), 1);
    debug_assert_eq!(h_bold.len(), 1);

    debug_assert_eq!(a.len(), 1);
    debug_assert_eq!(b.len(), 1);

    let r = Scalar::random(&mut *rng);
    let s = Scalar::random(&mut *rng);
    let delta = Scalar::random(&mut *rng);
    let eta = Scalar::random(&mut *rng);

    let ry = r * y[0];

    let mut A_terms =
      vec![(r, g_bold[0]), (s, h_bold[0]), ((ry * b[0]) + (s * y[0] * a[0]), g), (delta, h)];
    let A = multiexp(&A_terms) * INV_EIGHT();
    A_terms.zeroize();

    let mut B_terms = vec![(ry * s, g), (eta, h)];
    let B = multiexp(&B_terms) * INV_EIGHT();
    B_terms.zeroize();

    let e = Self::transcript_A_B(&mut transcript, A, B);

    let r_answer = r + (a[0] * e);
    let s_answer = s + (b[0] * e);
    let delta_answer = eta + (delta * e) + (alpha * (e * e));

    Some(WipProof { L: L_vec, R: R_vec, A, B, r_answer, s_answer, delta_answer })
  }

  pub(crate) fn verify<R: RngCore + CryptoRng>(
    self,
    rng: &mut R,
    verifier: &mut BulletproofsPlusBatchVerifier,
    mut transcript: Scalar,
    mut proof: WipProof,
  ) -> bool {
    let verifier_weight = Scalar::random(rng);

    let WipStatement { generators, P, y } = self;

    // Verify the L/R lengths
    {
      let mut lr_len = 0;
      while (1 << lr_len) < generators.len() {
        lr_len += 1;
      }
      if (proof.L.len() != lr_len) ||
        (proof.R.len() != lr_len) ||
        (generators.len() != (1 << lr_len))
      {
        return false;
      }
    }

    let inv_y = {
      let inv_y = y[0].invert();
      let mut res = Vec::with_capacity(y.len());
      res.push(inv_y);
      while res.len() < y.len() {
        res.push(inv_y * res.last().unwrap());
      }
      res
    };

    let mut e_is = Vec::with_capacity(proof.L.len());
    for (L, R) in proof.L.iter_mut().zip(proof.R.iter_mut()) {
      e_is.push(Self::transcript_L_R(&mut transcript, *L, *R));
      *L = L.mul_by_cofactor();
      *R = R.mul_by_cofactor();
    }

    let e = Self::transcript_A_B(&mut transcript, proof.A, proof.B);
    proof.A = proof.A.mul_by_cofactor();
    proof.B = proof.B.mul_by_cofactor();
    let neg_e_square = verifier_weight * -(e * e);

    verifier.0.other.push((neg_e_square, P));

    let mut challenges = Vec::with_capacity(proof.L.len());
    let product_cache = {
      let mut inv_e_is = e_is.clone();
      Scalar::batch_invert(&mut inv_e_is);

      debug_assert_eq!(e_is.len(), inv_e_is.len());
      debug_assert_eq!(e_is.len(), proof.L.len());
      debug_assert_eq!(e_is.len(), proof.R.len());
      for ((e_i, inv_e_i), (L, R)) in
        e_is.drain(..).zip(inv_e_is.drain(..)).zip(proof.L.iter().zip(proof.R.iter()))
      {
        debug_assert_eq!(e_i.invert(), inv_e_i);

        challenges.push((e_i, inv_e_i));

        let e_i_square = e_i * e_i;
        let inv_e_i_square = inv_e_i * inv_e_i;
        verifier.0.other.push((neg_e_square * e_i_square, *L));
        verifier.0.other.push((neg_e_square * inv_e_i_square, *R));
      }

      challenge_products(&challenges)
    };

    while verifier.0.g_bold.len() < generators.len() {
      verifier.0.g_bold.push(Scalar::ZERO);
    }
    while verifier.0.h_bold.len() < generators.len() {
      verifier.0.h_bold.push(Scalar::ZERO);
    }

    let re = proof.r_answer * e;
    for i in 0 .. generators.len() {
      let mut scalar = product_cache[i] * re;
      if i > 0 {
        scalar *= inv_y[i - 1];
      }
      verifier.0.g_bold[i] += verifier_weight * scalar;
    }

    let se = proof.s_answer * e;
    for i in 0 .. generators.len() {
      verifier.0.h_bold[i] += verifier_weight * (se * product_cache[product_cache.len() - 1 - i]);
    }

    verifier.0.other.push((verifier_weight * -e, proof.A));
    verifier.0.g += verifier_weight * (proof.r_answer * y[0] * proof.s_answer);
    verifier.0.h += verifier_weight * proof.delta_answer;
    verifier.0.other.push((-verifier_weight, proof.B));

    true
  }
}