1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
use std_shims::{
  vec::Vec,
  io::{self, Read},
  collections::HashMap,
};

use rand_core::{RngCore, CryptoRng};

use group::ff::Field;
use curve25519_dalek::{traits::Identity, Scalar, EdwardsPoint};
use dalek_ff_group as dfg;

use transcript::{Transcript, RecommendedTranscript};
use frost::{
  curve::Ed25519,
  Participant, FrostError, ThresholdKeys,
  dkg::lagrange,
  sign::{
    Preprocess, CachedPreprocess, SignatureShare, PreprocessMachine, SignMachine, SignatureMachine,
    AlgorithmMachine, AlgorithmSignMachine, AlgorithmSignatureMachine,
  },
};

use monero_serai::{
  ringct::{
    clsag::{ClsagContext, ClsagMultisigMaskSender, ClsagAddendum, ClsagMultisig},
    RctPrunable, RctProofs,
  },
  transaction::Transaction,
};
use crate::send::{SendError, SignableTransaction, key_image_sort};

/// Initial FROST machine to produce a signed transaction.
pub struct TransactionMachine {
  signable: SignableTransaction,

  i: Participant,

  // The key image generator, and the scalar offset from the spend key
  key_image_generators_and_offsets: Vec<(EdwardsPoint, Scalar)>,
  clsags: Vec<(ClsagMultisigMaskSender, AlgorithmMachine<Ed25519, ClsagMultisig>)>,
}

/// Second FROST machine to produce a signed transaction.
pub struct TransactionSignMachine {
  signable: SignableTransaction,

  i: Participant,

  key_image_generators_and_offsets: Vec<(EdwardsPoint, Scalar)>,
  clsags: Vec<(ClsagMultisigMaskSender, AlgorithmSignMachine<Ed25519, ClsagMultisig>)>,

  our_preprocess: Vec<Preprocess<Ed25519, ClsagAddendum>>,
}

/// Final FROST machine to produce a signed transaction.
pub struct TransactionSignatureMachine {
  tx: Transaction,
  clsags: Vec<AlgorithmSignatureMachine<Ed25519, ClsagMultisig>>,
}

impl SignableTransaction {
  /// Create a FROST signing machine out of this signable transaction.
  pub fn multisig(self, keys: &ThresholdKeys<Ed25519>) -> Result<TransactionMachine, SendError> {
    let mut clsags = vec![];

    let mut key_image_generators_and_offsets = vec![];
    for input in &self.inputs {
      // Check this is the right set of keys
      let offset = keys.offset(dfg::Scalar(input.key_offset()));
      if offset.group_key().0 != input.key() {
        Err(SendError::WrongPrivateKey)?;
      }

      let context = ClsagContext::new(input.decoys().clone(), input.commitment().clone())
        .map_err(SendError::ClsagError)?;
      let (clsag, clsag_mask_send) = ClsagMultisig::new(
        RecommendedTranscript::new(b"Monero Multisignature Transaction"),
        context,
      );
      key_image_generators_and_offsets.push((
        clsag.key_image_generator(),
        keys.current_offset().unwrap_or(dfg::Scalar::ZERO).0 + input.key_offset(),
      ));
      clsags.push((clsag_mask_send, AlgorithmMachine::new(clsag, offset)));
    }

    Ok(TransactionMachine {
      signable: self,
      i: keys.params().i(),
      key_image_generators_and_offsets,
      clsags,
    })
  }
}

impl PreprocessMachine for TransactionMachine {
  type Preprocess = Vec<Preprocess<Ed25519, ClsagAddendum>>;
  type Signature = Transaction;
  type SignMachine = TransactionSignMachine;

  fn preprocess<R: RngCore + CryptoRng>(
    mut self,
    rng: &mut R,
  ) -> (TransactionSignMachine, Self::Preprocess) {
    // Iterate over each CLSAG calling preprocess
    let mut preprocesses = Vec::with_capacity(self.clsags.len());
    let clsags = self
      .clsags
      .drain(..)
      .map(|(clsag_mask_send, clsag)| {
        let (clsag, preprocess) = clsag.preprocess(rng);
        preprocesses.push(preprocess);
        (clsag_mask_send, clsag)
      })
      .collect();
    let our_preprocess = preprocesses.clone();

    (
      TransactionSignMachine {
        signable: self.signable,

        i: self.i,

        key_image_generators_and_offsets: self.key_image_generators_and_offsets,
        clsags,

        our_preprocess,
      },
      preprocesses,
    )
  }
}

impl SignMachine<Transaction> for TransactionSignMachine {
  type Params = ();
  type Keys = ThresholdKeys<Ed25519>;
  type Preprocess = Vec<Preprocess<Ed25519, ClsagAddendum>>;
  type SignatureShare = Vec<SignatureShare<Ed25519>>;
  type SignatureMachine = TransactionSignatureMachine;

  fn cache(self) -> CachedPreprocess {
    unimplemented!(
      "Monero transactions don't support caching their preprocesses due to {}",
      "being already bound to a specific transaction"
    );
  }

  fn from_cache(
    (): (),
    _: ThresholdKeys<Ed25519>,
    _: CachedPreprocess,
  ) -> (Self, Self::Preprocess) {
    unimplemented!(
      "Monero transactions don't support caching their preprocesses due to {}",
      "being already bound to a specific transaction"
    );
  }

  fn read_preprocess<R: Read>(&self, reader: &mut R) -> io::Result<Self::Preprocess> {
    self.clsags.iter().map(|clsag| clsag.1.read_preprocess(reader)).collect()
  }

  fn sign(
    self,
    mut commitments: HashMap<Participant, Self::Preprocess>,
    msg: &[u8],
  ) -> Result<(TransactionSignatureMachine, Self::SignatureShare), FrostError> {
    if !msg.is_empty() {
      panic!("message was passed to the TransactionMachine when it generates its own");
    }

    // We do not need to be included here, yet this set of signers has yet to be validated
    // We explicitly remove ourselves to ensure we aren't included twice, if we were redundantly
    // included
    commitments.remove(&self.i);

    // Find out who's included
    let mut included = commitments.keys().copied().collect::<Vec<_>>();
    // This push won't duplicate due to the above removal
    included.push(self.i);
    // unstable sort may reorder elements of equal order
    // Given our lack of duplicates, we should have no elements of equal order
    included.sort_unstable();

    // Start calculating the key images, as needed on the TX level
    let mut key_images = vec![EdwardsPoint::identity(); self.clsags.len()];
    for (image, (generator, offset)) in
      key_images.iter_mut().zip(&self.key_image_generators_and_offsets)
    {
      *image = generator * offset;
    }

    // Convert the serialized nonces commitments to a parallelized Vec
    let mut commitments = (0 .. self.clsags.len())
      .map(|c| {
        included
          .iter()
          .map(|l| {
            let preprocess = if *l == self.i {
              self.our_preprocess[c].clone()
            } else {
              commitments.get_mut(l).ok_or(FrostError::MissingParticipant(*l))?[c].clone()
            };

            // While here, calculate the key image as needed to call sign
            // The CLSAG algorithm will independently calculate the key image/verify these shares
            key_images[c] +=
              preprocess.addendum.key_image_share().0 * lagrange::<dfg::Scalar>(*l, &included).0;

            Ok((*l, preprocess))
          })
          .collect::<Result<HashMap<_, _>, _>>()
      })
      .collect::<Result<Vec<_>, _>>()?;

    // The above inserted our own preprocess into these maps (which is unnecessary)
    // Remove it now
    for map in &mut commitments {
      map.remove(&self.i);
    }

    // The actual TX will have sorted its inputs by key image
    // We apply the same sort now to our CLSAG machines
    let mut clsags = Vec::with_capacity(self.clsags.len());
    for ((key_image, clsag), commitments) in key_images.iter().zip(self.clsags).zip(commitments) {
      clsags.push((key_image, clsag, commitments));
    }
    clsags.sort_by(|x, y| key_image_sort(x.0, y.0));
    let clsags =
      clsags.into_iter().map(|(_, clsag, commitments)| (clsag, commitments)).collect::<Vec<_>>();

    // Specify the TX's key images
    let tx = self.signable.with_key_images(key_images);

    // We now need to decide the masks for each CLSAG
    let clsag_len = clsags.len();
    let output_masks = tx.intent.sum_output_masks(&tx.key_images);
    let mut rng = tx.intent.seeded_rng(b"multisig_pseudo_out_masks");
    let mut sum_pseudo_outs = Scalar::ZERO;
    let mut to_sign = Vec::with_capacity(clsag_len);
    for (i, ((clsag_mask_send, clsag), commitments)) in clsags.into_iter().enumerate() {
      let mut mask = Scalar::random(&mut rng);
      if i == (clsag_len - 1) {
        mask = output_masks - sum_pseudo_outs;
      } else {
        sum_pseudo_outs += mask;
      }
      clsag_mask_send.send(mask);
      to_sign.push((clsag, commitments));
    }

    let tx = tx.transaction_without_signatures();
    let msg = tx.signature_hash().unwrap();

    // Iterate over each CLSAG calling sign
    let mut shares = Vec::with_capacity(to_sign.len());
    let clsags = to_sign
      .drain(..)
      .map(|(clsag, commitments)| {
        let (clsag, share) = clsag.sign(commitments, &msg)?;
        shares.push(share);
        Ok(clsag)
      })
      .collect::<Result<_, _>>()?;

    Ok((TransactionSignatureMachine { tx, clsags }, shares))
  }
}

impl SignatureMachine<Transaction> for TransactionSignatureMachine {
  type SignatureShare = Vec<SignatureShare<Ed25519>>;

  fn read_share<R: Read>(&self, reader: &mut R) -> io::Result<Self::SignatureShare> {
    self.clsags.iter().map(|clsag| clsag.read_share(reader)).collect()
  }

  fn complete(
    mut self,
    shares: HashMap<Participant, Self::SignatureShare>,
  ) -> Result<Transaction, FrostError> {
    let mut tx = self.tx;
    match tx {
      Transaction::V2 {
        proofs:
          Some(RctProofs {
            prunable: RctPrunable::Clsag { ref mut clsags, ref mut pseudo_outs, .. },
            ..
          }),
        ..
      } => {
        for (c, clsag) in self.clsags.drain(..).enumerate() {
          let (clsag, pseudo_out) = clsag.complete(
            shares.iter().map(|(l, shares)| (*l, shares[c].clone())).collect::<HashMap<_, _>>(),
          )?;
          clsags.push(clsag);
          pseudo_outs.push(pseudo_out);
        }
      }
      _ => unreachable!("attempted to sign a multisig TX which wasn't CLSAG"),
    }
    Ok(tx)
  }
}