1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
use std_shims::{vec, vec::Vec};

use curve25519_dalek::{
  constants::{ED25519_BASEPOINT_POINT, ED25519_BASEPOINT_TABLE},
  Scalar, EdwardsPoint,
};

use crate::{
  io::{varint_len, write_varint},
  primitives::Commitment,
  ringct::{
    clsag::Clsag, bulletproofs::Bulletproof, EncryptedAmount, RctType, RctBase, RctPrunable,
    RctProofs,
  },
  transaction::{Input, Output, Timelock, TransactionPrefix, Transaction},
  extra::{ARBITRARY_DATA_MARKER, PaymentId, Extra},
  send::{InternalPayment, SignableTransaction, SignableTransactionWithKeyImages},
};

impl SignableTransaction {
  // Output the inputs for this transaction.
  pub(crate) fn inputs(&self, key_images: &[EdwardsPoint]) -> Vec<Input> {
    debug_assert_eq!(self.inputs.len(), key_images.len());

    let mut res = Vec::with_capacity(self.inputs.len());
    for (input, key_image) in self.inputs.iter().zip(key_images) {
      res.push(Input::ToKey {
        amount: None,
        key_offsets: input.decoys().offsets().to_vec(),
        key_image: *key_image,
      });
    }
    res
  }

  // Output the outputs for this transaction.
  pub(crate) fn outputs(&self, key_images: &[EdwardsPoint]) -> Vec<Output> {
    let shared_key_derivations = self.shared_key_derivations(key_images);
    debug_assert_eq!(self.payments.len(), shared_key_derivations.len());

    let mut res = Vec::with_capacity(self.payments.len());
    for (payment, shared_key_derivations) in self.payments.iter().zip(&shared_key_derivations) {
      let key =
        (&shared_key_derivations.shared_key * ED25519_BASEPOINT_TABLE) + payment.address().spend();
      res.push(Output {
        key: key.compress(),
        amount: None,
        view_tag: (match self.rct_type {
          RctType::ClsagBulletproof => false,
          RctType::ClsagBulletproofPlus => true,
          _ => panic!("unsupported RctType"),
        })
        .then_some(shared_key_derivations.view_tag),
      });
    }
    res
  }

  // Calculate the TX extra for this transaction.
  pub(crate) fn extra(&self) -> Vec<u8> {
    let (tx_key, additional_keys) = self.transaction_keys_pub();
    debug_assert!(additional_keys.is_empty() || (additional_keys.len() == self.payments.len()));
    let payment_id_xors = self.payment_id_xors();
    debug_assert_eq!(self.payments.len(), payment_id_xors.len());

    let amount_of_keys = 1 + additional_keys.len();
    let mut extra = Extra::new(tx_key, additional_keys);

    if let Some((id, id_xor)) =
      self.payments.iter().zip(&payment_id_xors).find_map(|(payment, payment_id_xor)| {
        payment.address().payment_id().map(|id| (id, payment_id_xor))
      })
    {
      let id = (u64::from_le_bytes(id) ^ u64::from_le_bytes(*id_xor)).to_le_bytes();
      let mut id_vec = Vec::with_capacity(1 + 8);
      PaymentId::Encrypted(id).write(&mut id_vec).unwrap();
      extra.push_nonce(id_vec);
    } else {
      /*
        If there's no payment ID, we push a dummy (as wallet2 does) to the first payment.

        This does cause a random payment ID for the other recipient (a documented fingerprint).
        Functionally, random payment IDs should be fine as wallet2 will trigger this same behavior
        (a random payment ID being seen by the recipient) with a batch send if one of the recipient
        addresses has a payment ID.

        The alternative would be to not include any payment ID, fingerprinting to the entire
        blockchain this is non-standard wallet software (instead of just a single recipient).
      */
      if self.payments.len() == 2 {
        let (_, payment_id_xor) = self
          .payments
          .iter()
          .zip(&payment_id_xors)
          .find(|(payment, _)| matches!(payment, InternalPayment::Payment(_, _)))
          .expect("multiple change outputs?");
        let mut id_vec = Vec::with_capacity(1 + 8);
        // The dummy payment ID is [0; 8], which when xor'd with the mask, is just the mask
        PaymentId::Encrypted(*payment_id_xor).write(&mut id_vec).unwrap();
        extra.push_nonce(id_vec);
      }
    }

    // Include data if present
    for part in &self.data {
      let mut arb = vec![ARBITRARY_DATA_MARKER];
      arb.extend(part);
      extra.push_nonce(arb);
    }

    let mut serialized = Vec::with_capacity(32 * amount_of_keys);
    extra.write(&mut serialized).unwrap();
    serialized
  }

  pub(crate) fn weight_and_necessary_fee(&self) -> (usize, u64) {
    /*
      This transaction is variable length to:
        - The decoy offsets (fixed)
        - The TX extra (variable to key images, requiring an interactive protocol)

      Thankfully, the TX extra *length* is fixed. Accordingly, we can calculate the inevitable TX's
      weight at this time with a shimmed transaction.
    */
    let base_weight = {
      let mut key_images = Vec::with_capacity(self.inputs.len());
      let mut clsags = Vec::with_capacity(self.inputs.len());
      let mut pseudo_outs = Vec::with_capacity(self.inputs.len());
      for _ in &self.inputs {
        key_images.push(ED25519_BASEPOINT_POINT);
        clsags.push(Clsag {
          D: ED25519_BASEPOINT_POINT,
          s: vec![
            Scalar::ZERO;
            match self.rct_type {
              RctType::ClsagBulletproof => 11,
              RctType::ClsagBulletproofPlus => 16,
              _ => unreachable!("unsupported RCT type"),
            }
          ],
          c1: Scalar::ZERO,
        });
        pseudo_outs.push(ED25519_BASEPOINT_POINT);
      }
      let mut encrypted_amounts = Vec::with_capacity(self.payments.len());
      let mut bp_commitments = Vec::with_capacity(self.payments.len());
      let mut commitments = Vec::with_capacity(self.payments.len());
      for _ in &self.payments {
        encrypted_amounts.push(EncryptedAmount::Compact { amount: [0; 8] });
        bp_commitments.push(Commitment::zero());
        commitments.push(ED25519_BASEPOINT_POINT);
      }

      let padded_log2 = {
        let mut log2_find = 0;
        while (1 << log2_find) < self.payments.len() {
          log2_find += 1;
        }
        log2_find
      };
      // This is log2 the padded amount of IPA rows
      // We have 64 rows per commitment, so we need 64 * c IPA rows
      // We rewrite this as 2**6 * c
      // By finding the padded log2 of c, we get 2**6 * 2**p
      // This declares the log2 to be 6 + p
      let lr_len = 6 + padded_log2;

      let bulletproof = match self.rct_type {
        RctType::ClsagBulletproof => {
          let mut bp = Vec::with_capacity(((9 + (2 * lr_len)) * 32) + 2);
          let push_point = |bp: &mut Vec<u8>| {
            bp.push(1);
            bp.extend([0; 31]);
          };
          let push_scalar = |bp: &mut Vec<u8>| bp.extend([0; 32]);
          for _ in 0 .. 4 {
            push_point(&mut bp);
          }
          for _ in 0 .. 2 {
            push_scalar(&mut bp);
          }
          for _ in 0 .. 2 {
            write_varint(&lr_len, &mut bp).unwrap();
            for _ in 0 .. lr_len {
              push_point(&mut bp);
            }
          }
          for _ in 0 .. 3 {
            push_scalar(&mut bp);
          }
          Bulletproof::read(&mut bp.as_slice()).expect("made an invalid dummy BP")
        }
        RctType::ClsagBulletproofPlus => {
          let mut bp = Vec::with_capacity(((6 + (2 * lr_len)) * 32) + 2);
          let push_point = |bp: &mut Vec<u8>| {
            bp.push(1);
            bp.extend([0; 31]);
          };
          let push_scalar = |bp: &mut Vec<u8>| bp.extend([0; 32]);
          for _ in 0 .. 3 {
            push_point(&mut bp);
          }
          for _ in 0 .. 3 {
            push_scalar(&mut bp);
          }
          for _ in 0 .. 2 {
            write_varint(&lr_len, &mut bp).unwrap();
            for _ in 0 .. lr_len {
              push_point(&mut bp);
            }
          }
          Bulletproof::read_plus(&mut bp.as_slice()).expect("made an invalid dummy BP+")
        }
        _ => panic!("unsupported RctType"),
      };

      // `- 1` to remove the one byte for the 0 fee
      Transaction::V2 {
        prefix: TransactionPrefix {
          additional_timelock: Timelock::None,
          inputs: self.inputs(&key_images),
          outputs: self.outputs(&key_images),
          extra: self.extra(),
        },
        proofs: Some(RctProofs {
          base: RctBase { fee: 0, encrypted_amounts, pseudo_outs: vec![], commitments },
          prunable: RctPrunable::Clsag { bulletproof, clsags, pseudo_outs },
        }),
      }
      .weight() -
        1
    };

    // We now have the base weight, without the fee encoded
    // The fee itself will impact the weight as its encoding is [1, 9] bytes long
    let mut possible_weights = Vec::with_capacity(9);
    for i in 1 ..= 9 {
      possible_weights.push(base_weight + i);
    }
    debug_assert_eq!(possible_weights.len(), 9);

    // We now calculate the fee which would be used for each weight
    let mut possible_fees = Vec::with_capacity(9);
    for weight in possible_weights {
      possible_fees.push(self.fee_rate.calculate_fee_from_weight(weight));
    }

    // We now look for the fee whose length matches the length used to derive it
    let mut weight_and_fee = None;
    for (fee_len, possible_fee) in possible_fees.into_iter().enumerate() {
      let fee_len = 1 + fee_len;
      debug_assert!(1 <= fee_len);
      debug_assert!(fee_len <= 9);

      // We use the first fee whose encoded length is not larger than the length used within this
      // weight
      // This should be because the lengths are equal, yet means if somehow none are equal, this
      // will still terminate successfully
      if varint_len(possible_fee) <= fee_len {
        weight_and_fee = Some((base_weight + fee_len, possible_fee));
        break;
      }
    }
    weight_and_fee.unwrap()
  }
}

impl SignableTransactionWithKeyImages {
  pub(crate) fn transaction_without_signatures(&self) -> Transaction {
    let commitments_and_encrypted_amounts =
      self.intent.commitments_and_encrypted_amounts(&self.key_images);
    let mut commitments = Vec::with_capacity(self.intent.payments.len());
    let mut bp_commitments = Vec::with_capacity(self.intent.payments.len());
    let mut encrypted_amounts = Vec::with_capacity(self.intent.payments.len());
    for (commitment, encrypted_amount) in commitments_and_encrypted_amounts {
      commitments.push(commitment.calculate());
      bp_commitments.push(commitment);
      encrypted_amounts.push(encrypted_amount);
    }
    let bulletproof = {
      let mut bp_rng = self.intent.seeded_rng(b"bulletproof");
      (match self.intent.rct_type {
        RctType::ClsagBulletproof => Bulletproof::prove(&mut bp_rng, bp_commitments),
        RctType::ClsagBulletproofPlus => Bulletproof::prove_plus(&mut bp_rng, bp_commitments),
        _ => panic!("unsupported RctType"),
      })
      .expect("couldn't prove BP(+)s for this many payments despite checking in constructor?")
    };

    Transaction::V2 {
      prefix: TransactionPrefix {
        additional_timelock: Timelock::None,
        inputs: self.intent.inputs(&self.key_images),
        outputs: self.intent.outputs(&self.key_images),
        extra: self.intent.extra(),
      },
      proofs: Some(RctProofs {
        base: RctBase {
          fee: if self
            .intent
            .payments
            .iter()
            .any(|payment| matches!(payment, InternalPayment::Change(_)))
          {
            // The necessary fee is the fee
            self.intent.weight_and_necessary_fee().1
          } else {
            // If we don't have a change output, the difference is the fee
            let inputs =
              self.intent.inputs.iter().map(|input| input.commitment().amount).sum::<u64>();
            let payments = self
              .intent
              .payments
              .iter()
              .filter_map(|payment| match payment {
                InternalPayment::Payment(_, amount) => Some(amount),
                InternalPayment::Change(_) => None,
              })
              .sum::<u64>();
            // Safe since the constructor checks inputs >= (payments + fee)
            inputs - payments
          },
          encrypted_amounts,
          pseudo_outs: vec![],
          commitments,
        },
        prunable: RctPrunable::Clsag { bulletproof, clsags: vec![], pseudo_outs: vec![] },
      }),
    }
  }
}