1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
// This file is part of a fork of Substrate which has had various changes.
// Copyright (C) Parity Technologies (UK) Ltd.
// Copyright (C) 2022-2023 Luke Parker
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
use crate::mpsc::{tracing_unbounded, TracingUnboundedReceiver, TracingUnboundedSender};
use futures::{lock::Mutex, prelude::*};
use futures_timer::Delay;
use std::{
pin::Pin,
task::{Context, Poll},
time::Duration,
};
/// Holds a list of `UnboundedSender`s, each associated with a certain time period. Every time the
/// period elapses, we push an element on the sender.
///
/// Senders are removed only when they are closed.
pub struct StatusSinks<T> {
/// Should only be locked by `next`.
inner: Mutex<Inner<T>>,
/// Sending side of `Inner::entries_rx`.
entries_tx: TracingUnboundedSender<YieldAfter<T>>,
}
struct Inner<T> {
/// The actual entries of the list.
entries: stream::FuturesUnordered<YieldAfter<T>>,
/// Receives new entries and puts them in `entries`.
entries_rx: TracingUnboundedReceiver<YieldAfter<T>>,
}
struct YieldAfter<T> {
delay: Delay,
interval: Duration,
sender: Option<TracingUnboundedSender<T>>,
}
impl<T> Default for StatusSinks<T> {
fn default() -> Self {
Self::new()
}
}
impl<T> StatusSinks<T> {
/// Builds a new empty collection.
pub fn new() -> StatusSinks<T> {
let (entries_tx, entries_rx) = tracing_unbounded("status-sinks-entries", 100_000);
StatusSinks {
inner: Mutex::new(Inner { entries: stream::FuturesUnordered::new(), entries_rx }),
entries_tx,
}
}
/// Adds a sender to the collection.
///
/// The `interval` is the time period between two pushes on the sender.
pub fn push(&self, interval: Duration, sender: TracingUnboundedSender<T>) {
let _ = self.entries_tx.unbounded_send(YieldAfter {
delay: Delay::new(interval),
interval,
sender: Some(sender),
});
}
/// Waits until one of the sinks is ready, then returns an object that can be used to send
/// an element on said sink.
///
/// If the object isn't used to send an element, the slot is skipped.
pub async fn next(&self) -> ReadySinkEvent<'_, T> {
// This is only ever locked by `next`, which means that one `next` at a time can run.
let mut inner = self.inner.lock().await;
let inner = &mut *inner;
loop {
// Future that produces the next ready entry in `entries`, or doesn't produce anything
// if the list is empty.
let next_ready_entry = {
let entries = &mut inner.entries;
async move {
if let Some(v) = entries.next().await {
v
} else {
loop {
futures::pending!()
}
}
}
};
futures::select! {
new_entry = inner.entries_rx.next() => {
if let Some(new_entry) = new_entry {
inner.entries.push(new_entry);
}
},
(sender, interval) = next_ready_entry.fuse() => {
return ReadySinkEvent {
sinks: self,
sender: Some(sender),
interval,
}
}
}
}
}
}
/// One of the sinks is ready.
#[must_use]
pub struct ReadySinkEvent<'a, T> {
sinks: &'a StatusSinks<T>,
sender: Option<TracingUnboundedSender<T>>,
interval: Duration,
}
impl<'a, T> ReadySinkEvent<'a, T> {
/// Sends an element on the sender.
pub fn send(mut self, element: T) {
if let Some(sender) = self.sender.take() {
if sender.unbounded_send(element).is_ok() {
let _ = self.sinks.entries_tx.unbounded_send(YieldAfter {
// Note that since there's a small delay between the moment a task is
// woken up and the moment it is polled, the period is actually not
// `interval` but `interval + <delay>`. We ignore this problem in
// practice.
delay: Delay::new(self.interval),
interval: self.interval,
sender: Some(sender),
});
}
}
}
}
impl<'a, T> Drop for ReadySinkEvent<'a, T> {
fn drop(&mut self) {
if let Some(sender) = self.sender.take() {
if sender.is_closed() {
return
}
let _ = self.sinks.entries_tx.unbounded_send(YieldAfter {
delay: Delay::new(self.interval),
interval: self.interval,
sender: Some(sender),
});
}
}
}
impl<T> futures::Future for YieldAfter<T> {
type Output = (TracingUnboundedSender<T>, Duration);
fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let this = Pin::into_inner(self);
match Pin::new(&mut this.delay).poll(cx) {
Poll::Pending => Poll::Pending,
Poll::Ready(()) => {
let sender = this
.sender
.take()
.expect("sender is always Some unless the future is finished; qed");
Poll::Ready((sender, this.interval))
},
}
}
}
#[cfg(test)]
mod tests {
use super::StatusSinks;
use crate::mpsc::tracing_unbounded;
use futures::prelude::*;
use std::time::Duration;
#[test]
fn works() {
// We're not testing that the `StatusSink` properly enforces an order in the intervals, as
// this easily causes test failures on busy CPUs.
let status_sinks = StatusSinks::new();
let (tx, rx) = tracing_unbounded("test", 100_000);
status_sinks.push(Duration::from_millis(100), tx);
let mut val_order = 5;
futures::executor::block_on(futures::future::select(
Box::pin(async move {
loop {
let ev = status_sinks.next().await;
val_order += 1;
ev.send(val_order);
}
}),
Box::pin(async {
let items: Vec<i32> = rx.take(3).collect().await;
assert_eq!(items, [6, 7, 8]);
}),
));
}
}