1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
use std::{
  io::{self, Read},
  collections::{VecDeque, HashMap},
};

use ciphersuite::{group::GroupEncoding, Ciphersuite};

use serai_client::primitives::{ExternalNetworkId, ExternalCoin, Amount, ExternalBalance};

use crate::{
  DbTxn, Db, Payment, Plan,
  networks::{OutputType, Output, Network, UtxoNetwork},
  multisigs::scheduler::Scheduler as SchedulerTrait,
};

/// Deterministic output/payment manager.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Scheduler<N: UtxoNetwork> {
  key: <N::Curve as Ciphersuite>::G,
  coin: ExternalCoin,

  // Serai, when it has more outputs expected than it can handle in a single transaction, will
  // schedule the outputs to be handled later. Immediately, it just creates additional outputs
  // which will eventually handle those outputs
  //
  // These maps map output amounts, which we'll receive in the future, to the payments they should
  // be used on
  //
  // When those output amounts appear, their payments should be scheduled
  // The Vec<Payment> is for all payments that should be done per output instance
  // The VecDeque allows multiple sets of payments with the same sum amount to properly co-exist
  //
  // queued_plans are for outputs which we will create, yet when created, will have their amount
  // reduced by the fee it cost to be created. The Scheduler will then be told how what amount the
  // output actually has, and it'll be moved into plans
  queued_plans: HashMap<u64, VecDeque<Vec<Payment<N>>>>,
  plans: HashMap<u64, VecDeque<Vec<Payment<N>>>>,

  // UTXOs available
  utxos: Vec<N::Output>,

  // Payments awaiting scheduling due to the output availability problem
  payments: VecDeque<Payment<N>>,
}

fn scheduler_key<D: Db, G: GroupEncoding>(key: &G) -> Vec<u8> {
  D::key(b"SCHEDULER", b"scheduler", key.to_bytes())
}

impl<N: UtxoNetwork<Scheduler = Self>> Scheduler<N> {
  pub fn empty(&self) -> bool {
    self.queued_plans.is_empty() &&
      self.plans.is_empty() &&
      self.utxos.is_empty() &&
      self.payments.is_empty()
  }

  fn read<R: Read>(
    key: <N::Curve as Ciphersuite>::G,
    coin: ExternalCoin,
    reader: &mut R,
  ) -> io::Result<Self> {
    let mut read_plans = || -> io::Result<_> {
      let mut all_plans = HashMap::new();
      let mut all_plans_len = [0; 4];
      reader.read_exact(&mut all_plans_len)?;
      for _ in 0 .. u32::from_le_bytes(all_plans_len) {
        let mut amount = [0; 8];
        reader.read_exact(&mut amount)?;
        let amount = u64::from_le_bytes(amount);

        let mut plans = VecDeque::new();
        let mut plans_len = [0; 4];
        reader.read_exact(&mut plans_len)?;
        for _ in 0 .. u32::from_le_bytes(plans_len) {
          let mut payments = vec![];
          let mut payments_len = [0; 4];
          reader.read_exact(&mut payments_len)?;

          for _ in 0 .. u32::from_le_bytes(payments_len) {
            payments.push(Payment::read(reader)?);
          }
          plans.push_back(payments);
        }
        all_plans.insert(amount, plans);
      }
      Ok(all_plans)
    };
    let queued_plans = read_plans()?;
    let plans = read_plans()?;

    let mut utxos = vec![];
    let mut utxos_len = [0; 4];
    reader.read_exact(&mut utxos_len)?;
    for _ in 0 .. u32::from_le_bytes(utxos_len) {
      utxos.push(N::Output::read(reader)?);
    }

    let mut payments = VecDeque::new();
    let mut payments_len = [0; 4];
    reader.read_exact(&mut payments_len)?;
    for _ in 0 .. u32::from_le_bytes(payments_len) {
      payments.push_back(Payment::read(reader)?);
    }

    Ok(Scheduler { key, coin, queued_plans, plans, utxos, payments })
  }

  // TODO2: Get rid of this
  // We reserialize the entire scheduler on any mutation to save it to the DB which is horrible
  // We should have an incremental solution
  fn serialize(&self) -> Vec<u8> {
    let mut res = Vec::with_capacity(4096);

    let mut write_plans = |plans: &HashMap<u64, VecDeque<Vec<Payment<N>>>>| {
      res.extend(u32::try_from(plans.len()).unwrap().to_le_bytes());
      for (amount, list_of_plans) in plans {
        res.extend(amount.to_le_bytes());
        res.extend(u32::try_from(list_of_plans.len()).unwrap().to_le_bytes());
        for plan in list_of_plans {
          res.extend(u32::try_from(plan.len()).unwrap().to_le_bytes());
          for payment in plan {
            payment.write(&mut res).unwrap();
          }
        }
      }
    };
    write_plans(&self.queued_plans);
    write_plans(&self.plans);

    res.extend(u32::try_from(self.utxos.len()).unwrap().to_le_bytes());
    for utxo in &self.utxos {
      utxo.write(&mut res).unwrap();
    }

    res.extend(u32::try_from(self.payments.len()).unwrap().to_le_bytes());
    for payment in &self.payments {
      payment.write(&mut res).unwrap();
    }

    debug_assert_eq!(&Self::read(self.key, self.coin, &mut res.as_slice()).unwrap(), self);
    res
  }

  pub fn new<D: Db>(
    txn: &mut D::Transaction<'_>,
    key: <N::Curve as Ciphersuite>::G,
    network: ExternalNetworkId,
  ) -> Self {
    assert!(N::branch_address(key).is_some());
    assert!(N::change_address(key).is_some());
    assert!(N::forward_address(key).is_some());

    let coin = {
      let coins = network.coins();
      assert_eq!(coins.len(), 1);
      coins[0]
    };

    let res = Scheduler {
      key,
      coin,
      queued_plans: HashMap::new(),
      plans: HashMap::new(),
      utxos: vec![],
      payments: VecDeque::new(),
    };
    // Save it to disk so from_db won't panic if we don't mutate it before rebooting
    txn.put(scheduler_key::<D, _>(&res.key), res.serialize());
    res
  }

  pub fn from_db<D: Db>(
    db: &D,
    key: <N::Curve as Ciphersuite>::G,
    network: ExternalNetworkId,
  ) -> io::Result<Self> {
    let coin = {
      let coins = network.coins();
      assert_eq!(coins.len(), 1);
      coins[0]
    };

    let scheduler = db.get(scheduler_key::<D, _>(&key)).unwrap_or_else(|| {
      panic!("loading scheduler from DB without scheduler for {}", hex::encode(key.to_bytes()))
    });
    let mut reader_slice = scheduler.as_slice();
    let reader = &mut reader_slice;

    Self::read(key, coin, reader)
  }

  pub fn can_use_branch(&self, balance: ExternalBalance) -> bool {
    assert_eq!(balance.coin, self.coin);
    self.plans.contains_key(&balance.amount.0)
  }

  fn execute(
    &mut self,
    inputs: Vec<N::Output>,
    mut payments: Vec<Payment<N>>,
    key_for_any_change: <N::Curve as Ciphersuite>::G,
  ) -> Plan<N> {
    let mut change = false;
    let mut max = N::MAX_OUTPUTS;

    let payment_amounts = |payments: &Vec<Payment<N>>| {
      payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>()
    };

    // Requires a change output
    if inputs.iter().map(|output| output.balance().amount.0).sum::<u64>() !=
      payment_amounts(&payments)
    {
      change = true;
      max -= 1;
    }

    let mut add_plan = |payments| {
      let amount = payment_amounts(&payments);
      self.queued_plans.entry(amount).or_insert(VecDeque::new()).push_back(payments);
      amount
    };

    let branch_address = N::branch_address(self.key).unwrap();

    // If we have more payments than we can handle in a single TX, create plans for them
    // TODO2: This isn't perfect. For 258 outputs, and a MAX_OUTPUTS of 16, this will create:
    // 15 branches of 16 leaves
    // 1 branch of:
    // - 1 branch of 16 leaves
    // - 2 leaves
    // If this was perfect, the heaviest branch would have 1 branch of 3 leaves and 15 leaves
    while payments.len() > max {
      // The resulting TX will have the remaining payments and a new branch payment
      let to_remove = (payments.len() + 1) - N::MAX_OUTPUTS;
      // Don't remove more than possible
      let to_remove = to_remove.min(N::MAX_OUTPUTS);

      // Create the plan
      let removed = payments.drain((payments.len() - to_remove) ..).collect::<Vec<_>>();
      assert_eq!(removed.len(), to_remove);
      let amount = add_plan(removed);

      // Create the payment for the plan
      // Push it to the front so it's not moved into a branch until all lower-depth items are
      payments.insert(
        0,
        Payment {
          address: branch_address.clone(),
          data: None,
          balance: ExternalBalance { coin: self.coin, amount: Amount(amount) },
        },
      );
    }

    Plan {
      key: self.key,
      inputs,
      payments,
      change: Some(N::change_address(key_for_any_change).unwrap()).filter(|_| change),
      scheduler_addendum: (),
    }
  }

  fn add_outputs(
    &mut self,
    mut utxos: Vec<N::Output>,
    key_for_any_change: <N::Curve as Ciphersuite>::G,
  ) -> Vec<Plan<N>> {
    log::info!("adding {} outputs", utxos.len());

    let mut txs = vec![];

    for utxo in utxos.drain(..) {
      if utxo.kind() == OutputType::Branch {
        let amount = utxo.balance().amount.0;
        if let Some(plans) = self.plans.get_mut(&amount) {
          // Execute the first set of payments possible with an output of this amount
          let payments = plans.pop_front().unwrap();
          // They won't be equal if we dropped payments due to being dust
          assert!(amount >= payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>());

          // If we've grabbed the last plan for this output amount, remove it from the map
          if plans.is_empty() {
            self.plans.remove(&amount);
          }

          // Create a TX for these payments
          txs.push(self.execute(vec![utxo], payments, key_for_any_change));
          continue;
        }
      }

      self.utxos.push(utxo);
    }

    log::info!("{} planned TXs have had their required inputs confirmed", txs.len());
    txs
  }

  // Schedule a series of outputs/payments.
  pub fn schedule<D: Db>(
    &mut self,
    txn: &mut D::Transaction<'_>,
    utxos: Vec<N::Output>,
    mut payments: Vec<Payment<N>>,
    key_for_any_change: <N::Curve as Ciphersuite>::G,
    force_spend: bool,
  ) -> Vec<Plan<N>> {
    for utxo in &utxos {
      assert_eq!(utxo.balance().coin, self.coin);
    }
    for payment in &payments {
      assert_eq!(payment.balance.coin, self.coin);
    }

    // Drop payments to our own branch address
    /*
      created_output will be called any time we send to a branch address. If it's called, and it
      wasn't expecting to be called, that's almost certainly an error. The only way to guarantee
      this however is to only have us send to a branch address when creating a branch, hence the
      dropping of pointless payments.

      This is not comprehensive as a payment may still be made to another active multisig's branch
      address, depending on timing. This is safe as the issue only occurs when a multisig sends to
      its *own* branch address, since created_output is called on the signer's Scheduler.
    */
    {
      let branch_address = N::branch_address(self.key).unwrap();
      payments =
        payments.drain(..).filter(|payment| payment.address != branch_address).collect::<Vec<_>>();
    }

    let mut plans = self.add_outputs(utxos, key_for_any_change);

    log::info!("scheduling {} new payments", payments.len());

    // Add all new payments to the list of pending payments
    self.payments.extend(payments);
    let payments_at_start = self.payments.len();
    log::info!("{} payments are now scheduled", payments_at_start);

    // If we don't have UTXOs available, don't try to continue
    if self.utxos.is_empty() {
      log::info!("no utxos currently available");
      return plans;
    }

    // Sort UTXOs so the highest valued ones are first
    self.utxos.sort_by(|a, b| a.balance().amount.0.cmp(&b.balance().amount.0).reverse());

    // We always want to aggregate our UTXOs into a single UTXO in the name of simplicity
    // We may have more UTXOs than will fit into a TX though
    // We use the most valuable UTXOs to handle our current payments, and we return aggregation TXs
    // for the rest of the inputs
    // Since we do multiple aggregation TXs at once, this will execute in logarithmic time
    let utxos = self.utxos.drain(..).collect::<Vec<_>>();
    let mut utxo_chunks =
      utxos.chunks(N::MAX_INPUTS).map(<[<N as Network>::Output]>::to_vec).collect::<Vec<_>>();

    // Use the first chunk for any scheduled payments, since it has the most value
    let utxos = utxo_chunks.remove(0);

    // If the last chunk exists and only has one output, don't try aggregating it
    // Set it to be restored to UTXO set
    let mut to_restore = None;
    if let Some(mut chunk) = utxo_chunks.pop() {
      if chunk.len() == 1 {
        to_restore = Some(chunk.pop().unwrap());
      } else {
        utxo_chunks.push(chunk);
      }
    }

    for chunk in utxo_chunks.drain(..) {
      log::debug!("aggregating a chunk of {} inputs", chunk.len());
      plans.push(Plan {
        key: self.key,
        inputs: chunk,
        payments: vec![],
        change: Some(N::change_address(key_for_any_change).unwrap()),
        scheduler_addendum: (),
      })
    }

    // We want to use all possible UTXOs for all possible payments
    let mut balance = utxos.iter().map(|output| output.balance().amount.0).sum::<u64>();

    // If we can't fulfill the next payment, we have encountered an instance of the UTXO
    // availability problem
    // This shows up in networks like Monero, where because we spent outputs, our change has yet to
    // re-appear. Since it has yet to re-appear, we only operate with a balance which is a subset
    // of our total balance
    // Despite this, we may be ordered to fulfill a payment which is our total balance
    // The solution is to wait for the temporarily unavailable change outputs to re-appear,
    // granting us access to our full balance
    let mut executing = vec![];
    while !self.payments.is_empty() {
      let amount = self.payments[0].balance.amount.0;
      if balance.checked_sub(amount).is_some() {
        balance -= amount;
        executing.push(self.payments.pop_front().unwrap());
      } else {
        // Doesn't check if other payments would fit into the current batch as doing so may never
        // let enough inputs become simultaneously availabile to enable handling of payments[0]
        break;
      }
    }

    // Now that we have the list of payments we can successfully handle right now, create the TX
    // for them
    if !executing.is_empty() {
      plans.push(self.execute(utxos, executing, key_for_any_change));
    } else {
      // If we don't have any payments to execute, save these UTXOs for later
      self.utxos.extend(utxos);
    }

    // If we're instructed to force a spend, do so
    // This is used when an old multisig is retiring and we want to always transfer outputs to the
    // new one, regardless if we currently have payments
    if force_spend && (!self.utxos.is_empty()) {
      assert!(self.utxos.len() <= N::MAX_INPUTS);
      plans.push(Plan {
        key: self.key,
        inputs: self.utxos.drain(..).collect::<Vec<_>>(),
        payments: vec![],
        change: Some(N::change_address(key_for_any_change).unwrap()),
        scheduler_addendum: (),
      });
    }

    // If there's a UTXO to restore, restore it
    // This is done now as if there is a to_restore output, and it was inserted into self.utxos
    // earlier, self.utxos.len() may become `N::MAX_INPUTS + 1`
    // The prior block requires the len to be `<= N::MAX_INPUTS`
    if let Some(to_restore) = to_restore {
      self.utxos.push(to_restore);
    }

    txn.put(scheduler_key::<D, _>(&self.key), self.serialize());

    log::info!(
      "created {} plans containing {} payments to sign, with {} payments pending scheduling",
      plans.len(),
      payments_at_start - self.payments.len(),
      self.payments.len(),
    );
    plans
  }

  pub fn consume_payments<D: Db>(&mut self, txn: &mut D::Transaction<'_>) -> Vec<Payment<N>> {
    let res: Vec<_> = self.payments.drain(..).collect();
    if !res.is_empty() {
      txn.put(scheduler_key::<D, _>(&self.key), self.serialize());
    }
    res
  }

  // Note a branch output as having been created, with the amount it was actually created with,
  // or not having been created due to being too small
  pub fn created_output<D: Db>(
    &mut self,
    txn: &mut D::Transaction<'_>,
    expected: u64,
    actual: Option<u64>,
  ) {
    log::debug!("output expected to have {} had {:?} after fees", expected, actual);

    // Get the payments this output is expected to handle
    let queued = self.queued_plans.get_mut(&expected).unwrap();
    let mut payments = queued.pop_front().unwrap();
    assert_eq!(expected, payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>());
    // If this was the last set of payments at this amount, remove it
    if queued.is_empty() {
      self.queued_plans.remove(&expected);
    }

    // If we didn't actually create this output, return, dropping the child payments
    let Some(actual) = actual else { return };

    // Amortize the fee amongst all payments underneath this branch
    {
      let mut to_amortize = actual - expected;
      // If the payments are worth less than this fee we need to amortize, return, dropping them
      if payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>() < to_amortize {
        return;
      }
      while to_amortize != 0 {
        let payments_len = u64::try_from(payments.len()).unwrap();
        let per_payment = to_amortize / payments_len;
        let mut overage = to_amortize % payments_len;

        for payment in &mut payments {
          let to_subtract = per_payment + overage;
          // Only subtract the overage once
          overage = 0;

          let subtractable = payment.balance.amount.0.min(to_subtract);
          to_amortize -= subtractable;
          payment.balance.amount.0 -= subtractable;
        }
      }
    }

    // Drop payments now below the dust threshold
    let payments = payments
      .into_iter()
      .filter(|payment| payment.balance.amount.0 >= N::DUST)
      .collect::<Vec<_>>();
    // Sanity check this was done properly
    assert!(actual >= payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>());

    // If there's no payments left, return
    if payments.is_empty() {
      return;
    }

    self.plans.entry(actual).or_insert(VecDeque::new()).push_back(payments);

    // TODO2: This shows how ridiculous the serialize function is
    txn.put(scheduler_key::<D, _>(&self.key), self.serialize());
  }
}

impl<N: UtxoNetwork<Scheduler = Self>> SchedulerTrait<N> for Scheduler<N> {
  type Addendum = ();

  /// Check if this Scheduler is empty.
  fn empty(&self) -> bool {
    Scheduler::empty(self)
  }

  /// Create a new Scheduler.
  fn new<D: Db>(
    txn: &mut D::Transaction<'_>,
    key: <N::Curve as Ciphersuite>::G,
    network: ExternalNetworkId,
  ) -> Self {
    Scheduler::new::<D>(txn, key, network)
  }

  /// Load a Scheduler from the DB.
  fn from_db<D: Db>(
    db: &D,
    key: <N::Curve as Ciphersuite>::G,
    network: ExternalNetworkId,
  ) -> io::Result<Self> {
    Scheduler::from_db::<D>(db, key, network)
  }

  /// Check if a branch is usable.
  fn can_use_branch(&self, balance: ExternalBalance) -> bool {
    Scheduler::can_use_branch(self, balance)
  }

  /// Schedule a series of outputs/payments.
  fn schedule<D: Db>(
    &mut self,
    txn: &mut D::Transaction<'_>,
    utxos: Vec<N::Output>,
    payments: Vec<Payment<N>>,
    key_for_any_change: <N::Curve as Ciphersuite>::G,
    force_spend: bool,
  ) -> Vec<Plan<N>> {
    Scheduler::schedule::<D>(self, txn, utxos, payments, key_for_any_change, force_spend)
  }

  /// Consume all payments still pending within this Scheduler, without scheduling them.
  fn consume_payments<D: Db>(&mut self, txn: &mut D::Transaction<'_>) -> Vec<Payment<N>> {
    Scheduler::consume_payments::<D>(self, txn)
  }

  /// Note a branch output as having been created, with the amount it was actually created with,
  /// or not having been created due to being too small.
  // TODO: Move this to ExternalBalance.
  fn created_output<D: Db>(
    &mut self,
    txn: &mut D::Transaction<'_>,
    expected: u64,
    actual: Option<u64>,
  ) {
    Scheduler::created_output::<D>(self, txn, expected, actual)
  }

  fn refund_plan<D: Db>(
    &mut self,
    _: &mut D::Transaction<'_>,
    output: N::Output,
    refund_to: N::Address,
  ) -> Plan<N> {
    let output_id = output.id().as_ref().to_vec();
    let res = Plan {
      key: output.key(),
      // Uses a payment as this will still be successfully sent due to fee amortization,
      // and because change is currently always a Serai key
      payments: vec![Payment { address: refund_to, data: None, balance: output.balance() }],
      inputs: vec![output],
      change: None,
      scheduler_addendum: (),
    };
    log::info!("refund plan for {} has ID {}", hex::encode(output_id), hex::encode(res.id()));
    res
  }

  fn shim_forward_plan(output: N::Output, to: <N::Curve as Ciphersuite>::G) -> Option<Plan<N>> {
    Some(Plan {
      key: output.key(),
      payments: vec![Payment {
        address: N::forward_address(to).unwrap(),
        data: None,
        balance: output.balance(),
      }],
      inputs: vec![output],
      change: None,
      scheduler_addendum: (),
    })
  }

  fn forward_plan<D: Db>(
    &mut self,
    _: &mut D::Transaction<'_>,
    output: N::Output,
    to: <N::Curve as Ciphersuite>::G,
  ) -> Option<Plan<N>> {
    assert_eq!(self.key, output.key());
    // Call shim as shim returns the actual
    Self::shim_forward_plan(output, to)
  }
}