1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
use core::{fmt::Debug, time::Duration};
use std::{io, collections::HashMap};

use async_trait::async_trait;
use thiserror::Error;

use frost::{
  curve::{Ciphersuite, Curve},
  ThresholdKeys,
  sign::PreprocessMachine,
};

use serai_client::primitives::{ExternalBalance, ExternalNetworkId};

use log::error;

use tokio::time::sleep;

#[cfg(feature = "bitcoin")]
pub mod bitcoin;
#[cfg(feature = "bitcoin")]
pub use self::bitcoin::Bitcoin;

#[cfg(feature = "ethereum")]
pub mod ethereum;
#[cfg(feature = "ethereum")]
pub use ethereum::Ethereum;

#[cfg(feature = "monero")]
pub mod monero;
#[cfg(feature = "monero")]
pub use monero::Monero;

use crate::{Payment, Plan, multisigs::scheduler::Scheduler};

#[derive(Clone, Copy, Error, Debug)]
pub enum NetworkError {
  #[error("failed to connect to network daemon")]
  ConnectionError,
}

pub trait Id:
  Send + Sync + Clone + Default + PartialEq + AsRef<[u8]> + AsMut<[u8]> + Debug
{
}
impl<I: Send + Sync + Clone + Default + PartialEq + AsRef<[u8]> + AsMut<[u8]> + Debug> Id for I {}

#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum OutputType {
  // Needs to be processed/sent up to Substrate
  External,

  // Given a known output set, and a known series of outbound transactions, we should be able to
  // form a completely deterministic schedule S. The issue is when S has TXs which spend prior TXs
  // in S (which is needed for our logarithmic scheduling). In order to have the descendant TX, say
  // S[1], build off S[0], we need to observe when S[0] is included on-chain.
  //
  // We cannot.
  //
  // Monero (and other privacy coins) do not expose their UTXO graphs. Even if we know how to
  // create S[0], and the actual payment info behind it, we cannot observe it on the blockchain
  // unless we participated in creating it. Locking the entire schedule, when we cannot sign for
  // the entire schedule at once, to a single signing set isn't feasible.
  //
  // While any member of the active signing set can provide data enabling other signers to
  // participate, it's several KB of data which we then have to code communication for.
  // The other option is to simply not observe S[0]. Instead, observe a TX with an identical output
  // to the one in S[0] we intended to use for S[1]. It's either from S[0], or Eve, a malicious
  // actor, has sent us a forged TX which is... equally as usable? so who cares?
  //
  // The only issue is if we have multiple outputs on-chain with identical amounts and purposes.
  // Accordingly, when the scheduler makes a plan for when a specific output is available, it
  // shouldn't write that plan. It should *push* that plan to a queue of plans to perform when
  // instances of that output occur.
  Branch,

  // Should be added to the available UTXO pool with no further action
  Change,

  // Forwarded output from the prior multisig
  Forwarded,
}

impl OutputType {
  fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
    writer.write_all(&[match self {
      OutputType::External => 0,
      OutputType::Branch => 1,
      OutputType::Change => 2,
      OutputType::Forwarded => 3,
    }])
  }

  fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
    let mut byte = [0; 1];
    reader.read_exact(&mut byte)?;
    Ok(match byte[0] {
      0 => OutputType::External,
      1 => OutputType::Branch,
      2 => OutputType::Change,
      3 => OutputType::Forwarded,
      _ => Err(io::Error::other("invalid OutputType"))?,
    })
  }
}

pub trait Output<N: Network>: Send + Sync + Sized + Clone + PartialEq + Eq + Debug {
  type Id: 'static + Id;

  fn kind(&self) -> OutputType;

  fn id(&self) -> Self::Id;
  fn tx_id(&self) -> <N::Transaction as Transaction<N>>::Id; // TODO: Review use of
  fn key(&self) -> <N::Curve as Ciphersuite>::G;

  fn presumed_origin(&self) -> Option<N::Address>;

  fn balance(&self) -> ExternalBalance;
  fn data(&self) -> &[u8];

  fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()>;
  fn read<R: io::Read>(reader: &mut R) -> io::Result<Self>;
}

#[async_trait]
pub trait Transaction<N: Network>: Send + Sync + Sized + Clone + PartialEq + Debug {
  type Id: 'static + Id;
  fn id(&self) -> Self::Id;
  // TODO: Move to ExternalBalance
  #[cfg(test)]
  async fn fee(&self, network: &N) -> u64;
}

pub trait SignableTransaction: Send + Sync + Clone + Debug {
  // TODO: Move to ExternalBalance
  fn fee(&self) -> u64;
}

pub trait Eventuality: Send + Sync + Clone + PartialEq + Debug {
  type Claim: Send + Sync + Clone + PartialEq + Default + AsRef<[u8]> + AsMut<[u8]> + Debug;
  type Completion: Send + Sync + Clone + PartialEq + Debug;

  fn lookup(&self) -> Vec<u8>;

  fn read<R: io::Read>(reader: &mut R) -> io::Result<Self>;
  fn serialize(&self) -> Vec<u8>;

  fn claim(completion: &Self::Completion) -> Self::Claim;

  // TODO: Make a dedicated Completion trait
  fn serialize_completion(completion: &Self::Completion) -> Vec<u8>;
  fn read_completion<R: io::Read>(reader: &mut R) -> io::Result<Self::Completion>;
}

#[derive(Clone, PartialEq, Eq, Debug)]
pub struct EventualitiesTracker<E: Eventuality> {
  // Lookup property (input, nonce, TX extra...) -> (plan ID, eventuality)
  map: HashMap<Vec<u8>, ([u8; 32], E)>,
  // Block number we've scanned these eventualities too
  block_number: usize,
}

impl<E: Eventuality> EventualitiesTracker<E> {
  pub fn new() -> Self {
    EventualitiesTracker { map: HashMap::new(), block_number: usize::MAX }
  }

  pub fn register(&mut self, block_number: usize, id: [u8; 32], eventuality: E) {
    log::info!("registering eventuality for {}", hex::encode(id));

    let lookup = eventuality.lookup();
    if self.map.contains_key(&lookup) {
      panic!("registering an eventuality multiple times or lookup collision");
    }
    self.map.insert(lookup, (id, eventuality));
    // If our self tracker already went past this block number, set it back
    self.block_number = self.block_number.min(block_number);
  }

  pub fn drop(&mut self, id: [u8; 32]) {
    // O(n) due to the lack of a reverse lookup
    let mut found_key = None;
    for (key, value) in &self.map {
      if value.0 == id {
        found_key = Some(key.clone());
        break;
      }
    }

    if let Some(key) = found_key {
      self.map.remove(&key);
    }
  }
}

impl<E: Eventuality> Default for EventualitiesTracker<E> {
  fn default() -> Self {
    Self::new()
  }
}

#[async_trait]
pub trait Block<N: Network>: Send + Sync + Sized + Clone + Debug {
  // This is currently bounded to being 32 bytes.
  type Id: 'static + Id;
  fn id(&self) -> Self::Id;
  fn parent(&self) -> Self::Id;
  /// The monotonic network time at this block.
  ///
  /// This call is presumed to be expensive and should only be called sparingly.
  async fn time(&self, rpc: &N) -> u64;
}

// The post-fee value of an expected branch.
pub struct PostFeeBranch {
  pub expected: u64,
  pub actual: Option<u64>,
}

// Return the PostFeeBranches needed when dropping a transaction
fn drop_branches<N: Network>(
  key: <N::Curve as Ciphersuite>::G,
  payments: &[Payment<N>],
) -> Vec<PostFeeBranch> {
  let mut branch_outputs = vec![];
  for payment in payments {
    if Some(&payment.address) == N::branch_address(key).as_ref() {
      branch_outputs.push(PostFeeBranch { expected: payment.balance.amount.0, actual: None });
    }
  }
  branch_outputs
}

pub struct PreparedSend<N: Network> {
  /// None for the transaction if the SignableTransaction was dropped due to lack of value.
  pub tx: Option<(N::SignableTransaction, N::Eventuality)>,
  pub post_fee_branches: Vec<PostFeeBranch>,
  /// The updated operating costs after preparing this transaction.
  pub operating_costs: u64,
}

#[async_trait]
pub trait Network: 'static + Send + Sync + Clone + PartialEq + Debug {
  /// The elliptic curve used for this network.
  type Curve: Curve;

  /// The type representing the transaction for this network.
  type Transaction: Transaction<Self>; // TODO: Review use of
  /// The type representing the block for this network.
  type Block: Block<Self>;

  /// The type containing all information on a scanned output.
  // This is almost certainly distinct from the network's native output type.
  type Output: Output<Self>;
  /// The type containing all information on a planned transaction, waiting to be signed.
  type SignableTransaction: SignableTransaction;
  /// The type containing all information to check if a plan was completed.
  ///
  /// This must be binding to both the outputs expected and the plan ID.
  type Eventuality: Eventuality;
  /// The FROST machine to sign a transaction.
  type TransactionMachine: PreprocessMachine<
    Signature = <Self::Eventuality as Eventuality>::Completion,
  >;

  /// The scheduler for this network.
  type Scheduler: Scheduler<Self>;

  /// The type representing an address.
  // This should NOT be a String, yet a tailored type representing an efficient binary encoding,
  // as detailed in the integration documentation.
  type Address: Send
    + Sync
    + Clone
    + PartialEq
    + Eq
    + Debug
    + ToString
    + TryInto<Vec<u8>>
    + TryFrom<Vec<u8>>;

  /// Network ID for this network.
  const NETWORK: ExternalNetworkId;
  /// String ID for this network.
  const ID: &'static str;
  /// The estimated amount of time a block will take.
  const ESTIMATED_BLOCK_TIME_IN_SECONDS: usize;
  /// The amount of confirmations required to consider a block 'final'.
  const CONFIRMATIONS: usize;
  /// The maximum amount of outputs which will fit in a TX.
  /// This should be equal to MAX_INPUTS unless one is specifically limited.
  /// A TX with MAX_INPUTS and MAX_OUTPUTS must not exceed the max size.
  const MAX_OUTPUTS: usize;

  /// Minimum output value which will be handled.
  ///
  /// For any received output, there's the cost to spend the output. This value MUST exceed the
  /// cost to spend said output, and should by a notable margin (not just 2x, yet an order of
  /// magnitude).
  // TODO: Dust needs to be diversified per ExternalCoin
  const DUST: u64;

  /// The cost to perform input aggregation with a 2-input 1-output TX.
  const COST_TO_AGGREGATE: u64;

  /// Tweak keys for this network.
  fn tweak_keys(key: &mut ThresholdKeys<Self::Curve>);

  /// Address for the given group key to receive external coins to.
  #[cfg(test)]
  async fn external_address(&self, key: <Self::Curve as Ciphersuite>::G) -> Self::Address;
  /// Address for the given group key to use for scheduled branches.
  fn branch_address(key: <Self::Curve as Ciphersuite>::G) -> Option<Self::Address>;
  /// Address for the given group key to use for change.
  fn change_address(key: <Self::Curve as Ciphersuite>::G) -> Option<Self::Address>;
  /// Address for forwarded outputs from prior multisigs.
  ///
  /// forward_address must only return None if explicit forwarding isn't necessary.
  fn forward_address(key: <Self::Curve as Ciphersuite>::G) -> Option<Self::Address>;

  /// Get the latest block's number.
  async fn get_latest_block_number(&self) -> Result<usize, NetworkError>;
  /// Get a block by its number.
  async fn get_block(&self, number: usize) -> Result<Self::Block, NetworkError>;

  /// Get the latest block's number, retrying until success.
  async fn get_latest_block_number_with_retries(&self) -> usize {
    loop {
      match self.get_latest_block_number().await {
        Ok(number) => {
          return number;
        }
        Err(e) => {
          error!(
            "couldn't get the latest block number in the with retry get_latest_block_number: {e:?}",
          );
          sleep(Duration::from_secs(10)).await;
        }
      }
    }
  }

  /// Get a block, retrying until success.
  async fn get_block_with_retries(&self, block_number: usize) -> Self::Block {
    loop {
      match self.get_block(block_number).await {
        Ok(block) => {
          return block;
        }
        Err(e) => {
          error!("couldn't get block {block_number} in the with retry get_block: {:?}", e);
          sleep(Duration::from_secs(10)).await;
        }
      }
    }
  }

  /// Get the outputs within a block for a specific key.
  async fn get_outputs(
    &self,
    block: &Self::Block,
    key: <Self::Curve as Ciphersuite>::G,
  ) -> Vec<Self::Output>;

  /// Get the registered eventualities completed within this block, and any prior blocks which
  /// registered eventualities may have been completed in.
  ///
  /// This may panic if not fed a block greater than the tracker's block number.
  ///
  /// Plan ID -> (block number, TX ID, completion)
  // TODO: get_eventuality_completions_internal + provided get_eventuality_completions for common
  // code
  // TODO: Consider having this return the Transaction + the Completion?
  // Or Transaction with extract_completion?
  async fn get_eventuality_completions(
    &self,
    eventualities: &mut EventualitiesTracker<Self::Eventuality>,
    block: &Self::Block,
  ) -> HashMap<
    [u8; 32],
    (
      usize,
      <Self::Transaction as Transaction<Self>>::Id,
      <Self::Eventuality as Eventuality>::Completion,
    ),
  >;

  /// Returns the needed fee to fulfill this Plan at this fee rate.
  ///
  /// Returns None if this Plan isn't fulfillable (such as when the fee exceeds the input value).
  async fn needed_fee(
    &self,
    block_number: usize,
    inputs: &[Self::Output],
    payments: &[Payment<Self>],
    change: &Option<Self::Address>,
  ) -> Result<Option<u64>, NetworkError>;

  /// Create a SignableTransaction for the given Plan.
  ///
  /// The expected flow is:
  /// 1) Call needed_fee
  /// 2) If the Plan is fulfillable, amortize the fee
  /// 3) Call signable_transaction *which MUST NOT return None if the above was done properly*
  ///
  /// This takes a destructured Plan as some of these arguments are malleated from the original
  /// Plan.
  // TODO: Explicit AmortizedPlan?
  #[allow(clippy::too_many_arguments)]
  async fn signable_transaction(
    &self,
    block_number: usize,
    plan_id: &[u8; 32],
    key: <Self::Curve as Ciphersuite>::G,
    inputs: &[Self::Output],
    payments: &[Payment<Self>],
    change: &Option<Self::Address>,
    scheduler_addendum: &<Self::Scheduler as Scheduler<Self>>::Addendum,
  ) -> Result<Option<(Self::SignableTransaction, Self::Eventuality)>, NetworkError>;

  /// Prepare a SignableTransaction for a transaction.
  ///
  /// This must not persist anything as we will prepare Plans we never intend to execute.
  async fn prepare_send(
    &self,
    block_number: usize,
    plan: Plan<Self>,
    operating_costs: u64,
  ) -> Result<PreparedSend<Self>, NetworkError> {
    // Sanity check this has at least one output planned
    assert!((!plan.payments.is_empty()) || plan.change.is_some());

    let plan_id = plan.id();
    let Plan { key, inputs, mut payments, change, scheduler_addendum } = plan;
    let theoretical_change_amount = if change.is_some() {
      inputs.iter().map(|input| input.balance().amount.0).sum::<u64>() -
        payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>()
    } else {
      0
    };

    let Some(tx_fee) = self.needed_fee(block_number, &inputs, &payments, &change).await? else {
      // This Plan is not fulfillable
      // TODO: Have Plan explicitly distinguish payments and branches in two separate Vecs?
      return Ok(PreparedSend {
        tx: None,
        // Have all of its branches dropped
        post_fee_branches: drop_branches(key, &payments),
        // This plan expects a change output valued at sum(inputs) - sum(outputs)
        // Since we can no longer create this change output, it becomes an operating cost
        // TODO: Look at input restoration to reduce this operating cost
        operating_costs: operating_costs +
          if change.is_some() { theoretical_change_amount } else { 0 },
      });
    };

    // Amortize the fee over the plan's payments
    let (post_fee_branches, mut operating_costs) = (|| {
      // If we're creating a change output, letting us recoup coins, amortize the operating costs
      // as well
      let total_fee = tx_fee + if change.is_some() { operating_costs } else { 0 };

      let original_outputs = payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>();
      // If this isn't enough for the total fee, drop and move on
      if original_outputs < total_fee {
        let mut remaining_operating_costs = operating_costs;
        if change.is_some() {
          // Operating costs increase by the TX fee
          remaining_operating_costs += tx_fee;
          // Yet decrease by the payments we managed to drop
          remaining_operating_costs = remaining_operating_costs.saturating_sub(original_outputs);
        }
        return (drop_branches(key, &payments), remaining_operating_costs);
      }

      let initial_payment_amounts =
        payments.iter().map(|payment| payment.balance.amount.0).collect::<Vec<_>>();

      // Amortize the transaction fee across outputs
      let mut remaining_fee = total_fee;
      // Run as many times as needed until we can successfully subtract this fee
      while remaining_fee != 0 {
        // This shouldn't be a / by 0 as these payments have enough value to cover the fee
        let this_iter_fee = remaining_fee / u64::try_from(payments.len()).unwrap();
        let mut overage = remaining_fee % u64::try_from(payments.len()).unwrap();
        for payment in &mut payments {
          let this_payment_fee = this_iter_fee + overage;
          // Only subtract the overage once
          overage = 0;

          let subtractable = payment.balance.amount.0.min(this_payment_fee);
          remaining_fee -= subtractable;
          payment.balance.amount.0 -= subtractable;
        }
      }

      // If any payment is now below the dust threshold, set its value to 0 so it'll be dropped
      for payment in &mut payments {
        if payment.balance.amount.0 < Self::DUST {
          payment.balance.amount.0 = 0;
        }
      }

      // Note the branch outputs' new values
      let mut branch_outputs = vec![];
      for (initial_amount, payment) in initial_payment_amounts.into_iter().zip(&payments) {
        if Some(&payment.address) == Self::branch_address(key).as_ref() {
          branch_outputs.push(PostFeeBranch {
            expected: initial_amount,
            actual: if payment.balance.amount.0 == 0 {
              None
            } else {
              Some(payment.balance.amount.0)
            },
          });
        }
      }

      // Drop payments now worth 0
      payments = payments
        .drain(..)
        .filter(|payment| {
          if payment.balance.amount.0 != 0 {
            true
          } else {
            log::debug!("dropping dust payment from plan {}", hex::encode(plan_id));
            false
          }
        })
        .collect();

      // Sanity check the fee was successfully amortized
      let new_outputs = payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>();
      assert!((new_outputs + total_fee) <= original_outputs);

      (
        branch_outputs,
        if change.is_none() {
          // If the change is None, this had no effect on the operating costs
          operating_costs
        } else {
          // Since the change is some, and we successfully amortized, the operating costs were
          // recouped
          0
        },
      )
    })();

    let Some(tx) = self
      .signable_transaction(
        block_number,
        &plan_id,
        key,
        &inputs,
        &payments,
        &change,
        &scheduler_addendum,
      )
      .await?
    else {
      panic!(
        "{}. {}: {}, {}: {:?}, {}: {:?}, {}: {:?}, {}: {}, {}: {:?}",
        "signable_transaction returned None for a TX we prior successfully calculated the fee for",
        "id",
        hex::encode(plan_id),
        "inputs",
        inputs,
        "post-amortization payments",
        payments,
        "change",
        change,
        "successfully amoritized fee",
        tx_fee,
        "scheduler's addendum",
        scheduler_addendum,
      )
    };

    if change.is_some() {
      let on_chain_expected_change =
        inputs.iter().map(|input| input.balance().amount.0).sum::<u64>() -
          payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>() -
          tx_fee;
      // If the change value is less than the dust threshold, it becomes an operating cost
      // This may be slightly inaccurate as dropping payments may reduce the fee, raising the
      // change above dust
      // That's fine since it'd have to be in a very precarious state AND then it's over-eager in
      // tabulating costs
      if on_chain_expected_change < Self::DUST {
        operating_costs += theoretical_change_amount;
      }
    }

    Ok(PreparedSend { tx: Some(tx), post_fee_branches, operating_costs })
  }

  /// Attempt to sign a SignableTransaction.
  async fn attempt_sign(
    &self,
    keys: ThresholdKeys<Self::Curve>,
    transaction: Self::SignableTransaction,
  ) -> Result<Self::TransactionMachine, NetworkError>;

  /// Publish a completion.
  async fn publish_completion(
    &self,
    completion: &<Self::Eventuality as Eventuality>::Completion,
  ) -> Result<(), NetworkError>;

  /// Confirm a plan was completed by the specified transaction, per our bounds.
  ///
  /// Returns Err if there was an error with the confirmation methodology.
  /// Returns Ok(None) if this is not a valid completion.
  /// Returns Ok(Some(_)) with the completion if it's valid.
  async fn confirm_completion(
    &self,
    eventuality: &Self::Eventuality,
    claim: &<Self::Eventuality as Eventuality>::Claim,
  ) -> Result<Option<<Self::Eventuality as Eventuality>::Completion>, NetworkError>;

  /// Get a block's number by its ID.
  #[cfg(test)]
  async fn get_block_number(&self, id: &<Self::Block as Block<Self>>::Id) -> usize;

  /// Check an Eventuality is fulfilled by a claim.
  #[cfg(test)]
  async fn check_eventuality_by_claim(
    &self,
    eventuality: &Self::Eventuality,
    claim: &<Self::Eventuality as Eventuality>::Claim,
  ) -> bool;

  /// Get a transaction by the Eventuality it completes.
  #[cfg(test)]
  async fn get_transaction_by_eventuality(
    &self,
    block: usize,
    eventuality: &Self::Eventuality,
  ) -> Self::Transaction;

  #[cfg(test)]
  async fn mine_block(&self);

  /// Sends to the specified address.
  /// Additionally mines enough blocks so that the TX is past the confirmation depth.
  #[cfg(test)]
  async fn test_send(&self, key: Self::Address) -> Self::Block;
}

pub trait UtxoNetwork: Network {
  /// The maximum amount of inputs which will fit in a TX.
  /// This should be equal to MAX_OUTPUTS unless one is specifically limited.
  /// A TX with MAX_INPUTS and MAX_OUTPUTS must not exceed the max size.
  const MAX_INPUTS: usize;
}