1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
use std::{
  sync::Arc,
  collections::{HashSet, HashMap},
};

use serai_db::{Get, DbTxn, Db};

use crate::{
  time::CanonicalInstant,
  ext::{RoundNumber, BlockNumber, Block, Network},
  round::RoundData,
  message_log::MessageLog,
  Step, Data, DataFor, Message, MessageFor,
};

pub(crate) struct BlockData<N: Network> {
  db: N::Db,
  genesis: [u8; 32],

  pub(crate) number: BlockNumber,
  pub(crate) validator_id: Option<N::ValidatorId>,
  pub(crate) our_proposal: Option<N::Block>,

  pub(crate) log: MessageLog<N>,
  pub(crate) slashes: HashSet<N::ValidatorId>,
  // We track the end times of each round for two reasons:
  // 1) Knowing the start time of the next round
  // 2) Validating precommits, which include the end time of the round which produced it
  // This HashMap contains the end time of the round we're currently in and every round prior
  pub(crate) end_time: HashMap<RoundNumber, CanonicalInstant>,

  pub(crate) round: Option<RoundData<N>>,

  pub(crate) locked: Option<(RoundNumber, <N::Block as Block>::Id)>,
  pub(crate) valid: Option<(RoundNumber, N::Block)>,
}

impl<N: Network> BlockData<N> {
  pub(crate) fn new(
    db: N::Db,
    genesis: [u8; 32],
    weights: Arc<N::Weights>,
    number: BlockNumber,
    validator_id: Option<N::ValidatorId>,
    our_proposal: Option<N::Block>,
  ) -> BlockData<N> {
    BlockData {
      db,
      genesis,

      number,
      validator_id,
      our_proposal,

      log: MessageLog::new(weights),
      slashes: HashSet::new(),
      end_time: HashMap::new(),

      // The caller of BlockData::new is expected to be populated after by the caller
      round: None,

      locked: None,
      valid: None,
    }
  }

  pub(crate) fn round(&self) -> &RoundData<N> {
    self.round.as_ref().unwrap()
  }

  pub(crate) fn round_mut(&mut self) -> &mut RoundData<N> {
    self.round.as_mut().unwrap()
  }

  // Populate the end time up to the specified round
  // This is generally used when moving to the next round, where this will only populate one time,
  // yet is also used when jumping rounds (when 33% of the validators are on a round ahead of us)
  pub(crate) fn populate_end_time(&mut self, round: RoundNumber) {
    // Starts from the current round since we only start the current round once we have have all
    // the prior time data
    for r in (self.round().number.0 + 1) ..= round.0 {
      self.end_time.insert(
        RoundNumber(r),
        RoundData::<N>::new(RoundNumber(r), self.end_time[&RoundNumber(r - 1)]).end_time(),
      );
    }
  }

  // Start a new round. Optionally takes in the time for when this is the first round, and the time
  // isn't simply the time of the prior round (yet rather the prior block). Returns the proposal
  // data, if we are the proposer.
  pub(crate) fn new_round(
    &mut self,
    round: RoundNumber,
    proposer: N::ValidatorId,
    time: Option<CanonicalInstant>,
  ) -> Option<DataFor<N>> {
    debug_assert_eq!(round.0 == 0, time.is_some());

    // If this is the first round, we don't have a prior round's end time to use as the start
    // We use the passed in time instead
    // If this isn't the first round, ensure we have the prior round's end time by populating the
    // map with all rounds till this round
    // This can happen we jump from round x to round x+n, where n != 1
    // The paper says to do so whenever you observe a sufficient amount of peers on a higher round
    if round.0 != 0 {
      self.populate_end_time(round);
    }

    // L11-13
    self.round = Some(RoundData::<N>::new(
      round,
      time.unwrap_or_else(|| self.end_time[&RoundNumber(round.0 - 1)]),
    ));
    self.end_time.insert(round, self.round().end_time());

    // L14-21
    if Some(proposer) == self.validator_id {
      let (round, block) = self.valid.clone().unzip();
      block.or_else(|| self.our_proposal.clone()).map(|block| Data::Proposal(round, block))
    } else {
      self.round_mut().set_timeout(Step::Propose);
      None
    }
  }

  // Transform Data into an actual Message, using the contextual data from this block
  pub(crate) fn message(&mut self, data: DataFor<N>) -> Option<MessageFor<N>> {
    debug_assert_eq!(
      self.round().step,
      match data.step() {
        Step::Propose | Step::Prevote => Step::Propose,
        Step::Precommit => Step::Prevote,
      },
    );
    // Tendermint always sets the round's step to whatever it just broadcasted
    // Consolidate all of those here to ensure they aren't missed by an oversight
    // 27, 33, 41, 46, 60, 64
    self.round_mut().step = data.step();

    // Only return a message to if we're actually a current validator
    let round_number = self.round().number;
    let res = self.validator_id.map(|validator_id| Message {
      sender: validator_id,
      block: self.number,
      round: round_number,
      data,
    });

    if let Some(res) = res.as_ref() {
      const LATEST_BLOCK_KEY: &[u8] = b"tendermint-machine-sent_block";
      const LATEST_ROUND_KEY: &[u8] = b"tendermint-machine-sent_round";
      const PROPOSE_KEY: &[u8] = b"tendermint-machine-sent_propose";
      const PEVOTE_KEY: &[u8] = b"tendermint-machine-sent_prevote";
      const PRECOMMIT_KEY: &[u8] = b"tendermint-machine-sent_commit";

      let genesis = self.genesis;
      let key = |prefix: &[u8]| [prefix, &genesis].concat();

      let mut txn = self.db.txn();

      // Ensure we haven't prior sent a message for a future block/round
      let last_block_or_round = |txn: &mut <N::Db as Db>::Transaction<'_>, prefix, current| {
        let key = key(prefix);
        let latest =
          u64::from_le_bytes(txn.get(key.as_slice()).unwrap_or(vec![0; 8]).try_into().unwrap());
        if latest > current {
          None?;
        }
        if current > latest {
          txn.put(&key, current.to_le_bytes());
          return Some(true);
        }
        Some(false)
      };
      let new_block = last_block_or_round(&mut txn, LATEST_BLOCK_KEY, self.number.0)?;
      if new_block {
        // Delete the latest round key
        txn.del(key(LATEST_ROUND_KEY));
      }
      let new_round = last_block_or_round(&mut txn, LATEST_ROUND_KEY, round_number.0.into())?;
      if new_block || new_round {
        // Delete the messages for the old round
        txn.del(key(PROPOSE_KEY));
        txn.del(key(PEVOTE_KEY));
        txn.del(key(PRECOMMIT_KEY));
      }

      // Check we haven't sent this message within this round
      let msg_key = key(match res.data.step() {
        Step::Propose => PROPOSE_KEY,
        Step::Prevote => PEVOTE_KEY,
        Step::Precommit => PRECOMMIT_KEY,
      });
      if txn.get(&msg_key).is_some() {
        assert!(!new_block);
        assert!(!new_round);
        None?;
      }
      // Put that we're sending this message to the DB
      txn.put(&msg_key, []);

      txn.commit();
    }

    res
  }
}